精英家教网 > 高中数学 > 题目详情
2.在抛物线y=x2与直线y=2围成的封闭图形内任取一点A,O为坐标原点,则直线OA被该封闭图形解得的线段长小于$\sqrt{2}$的概率是(  )
A.$\frac{{\sqrt{3}}}{15}$B.$\frac{{\sqrt{3}}}{16}$C.$\frac{{\sqrt{2}}}{16}$D.$\frac{{\sqrt{2}}}{14}$

分析 欲求直线OA被该封闭图形解得的线段长小于$\sqrt{2}$的概率,利用几何概型解决,只须利用定积分求出阴影图的面积,最后利用它们的面积比求得即可概率.

解答 解:抛物线y=x2与直线y=2所围成的面积为
S阴影=${∫}_{-\sqrt{2}}^{\sqrt{2}}$(2-x2)dx=(2x-$\frac{1}{3}$x3)|${\;}_{-\sqrt{2}}^{\sqrt{2}}$=$\frac{8\sqrt{2}}{3}$,
以O为原点,$\sqrt{2}$为半径的圆与抛物线y=x2分别交于B,C两点,
则OB=OC=$\sqrt{2}$,圆O的方程为x2+y2=2,
故A点只有在红色区域内时,
直线OA被直线OA被该封闭图形解得的线段长小于$\sqrt{2}$,
由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=2}\\{y={x}^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$,
∴B(-1,1),C(1,1),
∴直线OB,OC的解析式分别为y=-x或y=x,
∴红色区域面积S=${∫}_{-1}^{0}(-x-{x}^{2})dx$+${∫}_{0}^{1}$(x-x2)dx=(-$\frac{1}{2}{x}^{2}-\frac{1}{3}{x}^{3}$)|${\;}_{-1}^{0}$+($\frac{1}{2}{x}^{2}-\frac{1}{3}{x}^{3}$)|${\;}_{0}^{1}$=$\frac{1}{6}$+$\frac{1}{6}$,
∴直线OA被该封闭图形解得的线段长小于$\sqrt{2}$的概率P=$\frac{{S}_{红}}{{S}_{阴影}}$=$\frac{\frac{1}{3}}{\frac{8\sqrt{2}}{3}}$=$\frac{\sqrt{2}}{16}$,
故选:C

点评 本题考查了利用定积分求面积以及几何摡型知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在区间[0,1]上单调递减,则将$f({-\frac{5}{2}})$,f(7),f(4)从小到大顺序排列为$f(7)<f({-\frac{5}{2}})<f(4)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.向量$\overrightarrow m=({\sqrt{3}sin\frac{x}{4},1}),\overrightarrow n=({cos\frac{x}{4},{{cos}^2}\frac{x}{4}})$,记$f(x)=\overrightarrow m•\overrightarrow n$.
(1)若f(x)=1,求$cos({x+\frac{π}{3}})$的值;
(2)在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求f(2A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解关于x不等式x2-x-a(a-1)>0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知长方体有一个公共顶点的三个面的面积分别是$\sqrt{3}$,$\sqrt{5}$,$\sqrt{15}$.则长方体的体积是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥A-EFCB中,四边形EFCB是梯形,EF∥BC且EF=$\frac{3}{4}$BC,△ABC是边长为2的正三角形,顶点F在AC上射影为点G,且FG=$\sqrt{3}$,CF=$\frac{{\sqrt{21}}}{2}$,BF=$\frac{5}{2}$.
(1)证明:平面FGB⊥平面ABC;
(2)求三棱锥E-GBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在如图所示的几何体中,EA⊥平面ABC,DB∥EA,AC⊥BC,且BC=BD=3,AE=2,AC=3$\sqrt{2}$,AF=2FB
(1)求证:CF⊥EF;
(2)求二面角D-CE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}的通项为an=$\left\{{\begin{array}{l}{n+\frac{15}{n},n≤5}\\{alnn-\frac{1}{4},n>5}\end{array}}$,若{an}的最小值为$\frac{31}{4}$,则实数a的取值范围是[$\frac{8}{ln6}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?x∈R,x2-x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是(  )
A.p∧qB.p∧¬qC.¬p∧qD.¬p∧¬q

查看答案和解析>>

同步练习册答案