【题目】某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段
(单位:小时)进行统计,其频率分布直方图如图所示.
![]()
(1)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;
(2)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.
【答案】(1)6人;(2)
.
【解析】
(1)利用频率分布直方图,求出频率,进而根据频数=频率×样本容量,得到答案;
(2)先计算从参加社区服务时间不少于90小时的学生中任意选取2人的情况总数,再计算所选学生的参加社区服务时间在同一时间段内的情况数,代入古典概型概率计算公式,可得答案.
(1)由题意可知,
参加社区服务在时间段[90,95)的学生人数为20×0.04×5=4(人),
参加社区服务在时间段[95,100]的学生人数为20×0.02×5=2(人),
所以参加社区服务时间不少于90小时的学生人数为 4+2=6(人).
(2)设所选学生的服务时间在同一时间段内为事件A.
由(1)可知,
参加社区服务在时间段[90,95)的学生有4人,记为a,b,c,d;
参加社区服务在时间段[95,100]的学生有2人,记为A,B.
从这6人中任意选取2人有ab,ac,ad,aA,aB,bc,bd,bA,bB,cd,cA,cB,dA,dB,AB,共15种情况.
事件A包括ab,ac,ad,bc,bd,cd,AB共7种情况.
所以所选学生的服务时间在同一时间段内的概率
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)经过点
,且两个焦点
,
的坐标依次为
和
.
(1)求椭圆
的标准方程;
(2)设
,
是椭圆
上的两个动点,
为坐标原点,直线
的斜率为
,直线
的斜率为
,若
,证明:直线
与以原点为圆心的定圆相切,并写出此定圆的标准方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com