精英家教网 > 高中数学 > 题目详情
12.已知y=x2+2(a-1)x+2在(-∞,4]上单调递减,在[5,+∞)上单调递增,则a的范围-4≤a≤-3.

分析 利用二次函数的对称轴的位置,列出不等式求解即可.

解答 解:y=x2+2(a-1)x+2在(-∞,4]上单调递减,在[5,+∞)上单调递增,
可得:4≤1-a≤5,
解得-4≤a≤-3.
故答案为:-4≤a≤-3.

点评 本题考查二次函数的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.(Ⅰ)计算:$\frac{1}{2}lg2+\sqrt{{{(lg\sqrt{2})}^2}-lg2+1}-\root{3}{{\sqrt{a^9}•\sqrt{{a^{-3}}}}}÷\root{3}{{\frac{{\sqrt{{a^{13}}}}}{{\sqrt{a^7}}}}}$,a>0;
(Ⅱ)已知$a={3^{{{log}_2}6-{{log}_3}\frac{1}{5}}},b={6^{{{log}_2}3}}•[3+\sqrt{{{(-4)}^2}}]$,试比较a与b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x,y满足$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-4≥0\end{array}\right.$,则目标函数z=3x+y的最小值是(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设平面内两向量$\overrightarrow{a}$与$\overrightarrow{b}$互相垂直,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,又k与t是两个不同时为零的实数.
(1)若$\overrightarrow{x}$=$\overrightarrow{a}$+(t-3)$\overrightarrow{b}$与$\overrightarrow{y}$=-k$\overrightarrow{a}$+t$\overrightarrow{b}$垂直,试求k关于t的函数关系式k=f(t);
(2)求函数k=f(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若log2a(5a-2)>0,则实数a的取值范围为$a>\frac{3}{5}$或$\frac{2}{5}<a<\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四个命题中正确的是(  )
A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示
B.经过任意两个不同点P1(x1,y1)、P2(x2,y2)的直线都可以用方程$\frac{(y-{y}_{1})}{({y}_{2}-{y}_{1})}$=$\frac{(x-{x}_{1})}{({x}_{2}-{x}_{1})}$表示
C.不经过原点的直线都可以用方程$\frac{x}{a}+\frac{y}{b}$=1表示
D.斜率存在且不为0,过点(n,0)的直线都可以用方程x=ny+n表示.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数z满足(3+2i)•z=5-i,则|z|=(  )
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.“f(x)≥3”是“f(x)的最小值为3”的(  )条件.
A.充分非必要B.必要非充分
C.充要D.既非充分也非必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知tanα=3,那么cos2α的值是(  )
A.$-\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

同步练习册答案