精英家教网 > 高中数学 > 题目详情
2.若等比数列前n项和为Sn,且满足S3=S2+S1,则公比q等于(  )
A.1B.-1C.±1D.不存在

分析 化简条件S3=S2+S1,得a3=a1,然后根据等比数列的通项公式进行求解即可.

解答 解:∵S3=S2+S1
∴a1+a2+a3=a1+a2+a1
即a3=a1
即${q}^{2}=\frac{{a}_{3}}{{a}_{1}}=1$,
则q=±1,
故选:C

点评 本题主要考查等比数列公比的求解,根据条件进行化简,结合等比数列的通项公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知集合M={1,0,-1},N={1,2},则M∪N={1,2,0,-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题正确的是(  )
A.若$\overrightarrow{a_0}$与$\overrightarrow{b_0}$是单位向量,则${\vec a_0}•{\vec b_0}=1$
B.若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,则$\overrightarrow a$∥$\overrightarrow c$
C.$|\overrightarrow a+\overrightarrow{b|}=|\overrightarrow a-\overrightarrow b|$,则$\vec a•\vec b=0$
D.($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某四面体的三视图如图所示,该四面体四个面的面积中最大的是(  )
A.$4\sqrt{5}$B.$4\sqrt{2}$C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),F1、F2分别为它的左、右焦点,过焦点且垂直于X轴的弦长为3,且两焦点与短轴一端点构成等边三角形.
(1)求椭圆C的方程;
(2)问是否存在过椭圆焦点F2的弦PQ,使得|PF1|,|PQ|,|QF1|成等差数列,若存在,求出PQ所在直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设α、β、γ满足0<α<β<γ<2π,若对任意x∈R,cos(x+α)+cos(x+β)+cos(x+γ)=0恒成立,则γ-α的值是(  )
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{2π}{3}$或$\frac{4π}{3}$D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,B=30°,C=45°,则$\frac{a+c}{b}$=$\frac{\sqrt{6}+3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在平面直角坐标系xOy中,已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F,点A,B在椭圆E上,直线AB经过坐标原点O.若AF⊥x轴,cos∠AFB=-$\frac{3}{5}$,则椭圆E的离心率e=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若a、b是正常数,a≠b,x、y∈(0,+∞),则$\frac{{a}^{2}}{x}$+$\frac{{b}^{2}}{y}$≥$\frac{{(a+b)}^{2}}{x+y}$,当且仅当$\frac{a}{x}$=$\frac{b}{y}$时上式取等号.利用以上结论,可以得到函数f(x)=$\frac{4}{x}$+$\frac{9}{1-2x}$(x∈(0,$\frac{1}{2}$))的最小值为17+12$\sqrt{2}$.

查看答案和解析>>

同步练习册答案