分析 由题意可得向量$\overrightarrow{AB}$和$\overrightarrow{BD}$共线,存在实数λ,使$\overrightarrow{AB}$=λ$\overrightarrow{BD}$,可得关于k,λ的方程组,进行求解即可.
解答 解:∵A,B,D三点共线,
∴向量$\overrightarrow{AB}$和$\overrightarrow{BD}$共线,故存在实数λ,使$\overrightarrow{AB}$=λ$\overrightarrow{BD}$,
由题意可得$\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overrightarrow{CD}$=(5$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$)+($\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$)=6($\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$),
即$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$=6λ$\overrightarrow{{e}_{1}}$+6λ $\overrightarrow{{e}_{2}}$,
故可得 $\left\{\begin{array}{l}{6λ=1}\\{6λ=k}\end{array}\right.$,解得 $\left\{\begin{array}{l}{λ=1}\\{k=1}\end{array}\right.$,
故k=1,
故答案为:1.
点评 本题考查向量的线性运算,涉及向量的共线定理,建立方程关系是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{2}{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (2,2$\sqrt{2}$) | C. | (3,2$\sqrt{3}$) | D. | (4,±4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}+1}{2}$ | B. | $\frac{\sqrt{3}}{2}$+1 | C. | $\frac{\sqrt{3}+1}{2}$ | D. | $\frac{\sqrt{2}+1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com