精英家教网 > 高中数学 > 题目详情
14.已知F1、F2为双曲线E的左、右焦点,点M在E上,△F1F2M为等腰三角形,且顶角为120°,则E的离心率为(  )
A.$\frac{\sqrt{5}+1}{2}$B.$\frac{\sqrt{3}}{2}$+1C.$\frac{\sqrt{3}+1}{2}$D.$\frac{\sqrt{2}+1}{2}$

分析 不妨设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),由题意,∠F1F2M=120°,F1F2=F2M=2c,可得M(2c,$\sqrt{3}$c),代入$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,可得$\frac{4{c}^{2}}{{a}^{2}}$-$\frac{3{c}^{2}}{{b}^{2}}$=1,即可求出E的离心率.

解答 解:不妨设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),
由题意,∠F1F2M=120°,F1F2=F2M=2c,
∴M(2c,$\sqrt{3}$c),
代入$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,可得$\frac{4{c}^{2}}{{a}^{2}}$-$\frac{3{c}^{2}}{{b}^{2}}$=1,
∴4e4-8e2+1=0,
∴e=$\frac{\sqrt{3}+1}{2}$,
故选:C.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,求出M的坐标是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=3,且$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影与$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影相等,则|$\overrightarrow{a}$-$\overrightarrow{b}$|等于$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是空间两个不共线的向量,已知$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=5$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,$\overrightarrow{DC}$=-$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,且A,B,D三点共线,则实数k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列条件使M与A,B,C一定共面的是(  )
A.$\overrightarrow{OM}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$+$\overrightarrow{OC}$B.$\overrightarrow{OM}$+$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$
C.$\overrightarrow{OM}$=$\frac{1}{5}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$D.$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=$\overrightarrow{0}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=x2+x-lnx的零点的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lg($\sqrt{{x}^{2}+2}$+x)-lg$\sqrt{2}$.
(1)判断函数f(x)的奇偶性;
(2)判断并用定义证明函数f(x)的单调性;
(3)若f(k•3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,F1F2为椭圆C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1的左、右焦点,点P为椭圆C上一点,延长PF1、,PF2分别交椭圆C于A,B.若$\overrightarrow{P{F}_{1}}$=2$\overrightarrow{{F}_{1}A}$,$\overrightarrow{P{F}_{2}}$=$λ\overrightarrow{{F}_{2}B}$,则λ=(  )
A.1B.$\sqrt{2}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,直线l经过第二、第三、第四象限,l的倾斜角为α,斜率为k,则(  )
A.ksin(π+α)>0B.kcos(π-α)>0C.ksinα≤0D.kcosα≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.中心在坐标原点O,焦点在坐标轴上的椭圆E经过两点$R({-\frac{{\sqrt{3}}}{2},-\frac{{\sqrt{6}}}{2}}),Q({\frac{3}{2},\frac{{\sqrt{2}}}{2}})$.分别过椭圆E的焦点F1、F2的动直线l1,l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率k1、k2、k3、k4满足k1+k2=k3+k4
(1)求椭圆E的方程;
(2)是否存在定点M、N,使得|PM|+|PN|为定值.若存在,求出M、N点坐标并求出此定值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案