4£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$|=1£¬|$\overrightarrow{b}$|=3£¬ÇÒ$\overrightarrow{a}$ÔÚ$\overrightarrow{b}$·½ÏòÉϵÄͶӰÓë$\overrightarrow{b}$ÔÚ$\overrightarrow{a}$·½ÏòÉϵÄͶӰÏàµÈ£¬Ôò|$\overrightarrow{a}$-$\overrightarrow{b}$|µÈÓÚ$\sqrt{10}$£®

·ÖÎö ¸ù¾ÝͶӰÏàµÈÁгö·½³Ì½â³öÏòÁ¿¼Ð½Ç£¬Çó³öÊýÁ¿»ý£¬´úÈëÄ£³¤¹«Ê½¼ÆË㣮

½â´ð ½â£ºÉè$\overrightarrow{a}£¬\overrightarrow{b}$¼Ð½ÇΪ¦È£¬Ôòcos¦È=3cos¦È£¬¡àcos¦È=0£¬$¦È=\frac{¦Ð}{2}$£®
¡à$\overrightarrow{a}•\overrightarrow{b}$=0£¬¡à£¨$\overrightarrow{a}-\overrightarrow{b}$£©2=${\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}-2\overrightarrow{a}•\overrightarrow{b}$=10£®¡à|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{10}$£®
¹Ê´ð°¸Îª$\sqrt{10}$£®

µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËËã¼°Ä£³¤ÔËË㣬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¼ÆË㣺
£¨1£©${0.2^{-2}}-{¦Ð^0}+{£¨\frac{1}{27}£©^{-\;\;\frac{1}{3}}}$£»
£¨2£©log39+log26-log23+log43¡Álog316£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÉèÕýÊýa£¬bÂú×ãlog2a=log3b£¬ÔòÏÂÁнáÂÛÖУ¬²»¿ÉÄܳÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®1£¼a£¼bB£®0£¼b£¼a£¼1C£®a=bD£®1£¼b£¼a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÏòÁ¿$\overrightarrow{m}$=£¨$\sqrt{3}$cos$\frac{x}{2}$£¬cos$\frac{x}{2}$£©£¬$\overrightarrow{n}$=£¨sin$\frac{x}{2}$£¬cos$\frac{x}{2}$£©£¬º¯Êýf£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨¢ò£©ÔÚÈñ½Ç¡÷ABCÖУ¬ÒÑÖªA=$\frac{¦Ð}{3}$£¬Çóf£¨B£©µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®µÈ²îÊýÁÐ{an}ÖУ¬a3=7£¬a5=a2+6£¬Ôò{an}µÄͨÏʽΪan=2n+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Îª¼ì²âijÖÖÁã¼þµÄÉú²úÖÊÁ¿£¬¼ìÑéÈËÔ±Ðè³éȡͬÅú´ÎµÄÁã¼þÑù±¾½øÐмì²âÖ¸±êÆÀ·Ö£®Èô¼ì²âºóÆÀ·Ö½á¹û´óÓÚ60·ÖµÄÁã¼þΪºÏ¸ñÁã¼þ£¬ÆÀ·Ö½á¹û²»³¬¹ý40·ÖµÄÁã¼þ½«Ö±½Ó±»ÌÔÌ­£¬ÆÀ·Ö½á¹ûÔÚ£¨40£¬60]ÄÚµÄÁã¼þ¿ÉÄܱ»ÐÞ¸´Ò²¿ÉÄܱ»ÌÔÌ­£®ÏÖ¼ìÑéԱСÕżì²â³ö200¸öºÏ¸ñÁã¼þ£¬¸ù¾ÝÖ¸±êÆÀ·Ö»æÖÆµÄÆµÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£®
£¨1£©Çó³öƵÂÊ·Ö²¼ÓëÖ±·½Í¼ÖÐaµÄÖµ£»
£¨2£©¹À¼ÆÕâ200¸öÁã¼þÆÀ·Ö½á¹ûµÄƽ¾ùÊýºÍÖÐλÊý£»
£¨2£©¸ù¾ÝÒÑÓеľ­Ñ飬¿ÉÄܱ»ÐÞ¸´µÄÁã¼þ¸öÌå±»ÐÞ¸´µÄ¸ÅÂÊÈç±í£º
Áã¼þÆÀ·Ö½á¹ûËùÔÚÇø¼ä£¨40£¬50]£¨50£¬60]
ÿ¸öÁã¼þ¸öÊý±»ÐÞ¸´µÄ¸ÅÂÊ$\frac{1}{3}$$\frac{1}{2}$
¼ÙÉèÿ¸öÁã¼þ±»ÐÞ¸´Óë·ñÏ໥¶ÀÁ¢£®ÏÖÓÐ5¸öÁã¼þµÄ¼ì²âÖ¸±êÆÀ·Ö½á¹ûΪ£¨µ¥Î»£º·Ö£©£º38£¬43£¬45£¬52£¬58£¬
¢ÙÇóÕâ5¸öÁã¼þÖУ¬ÖÁ¶àÓÐ2¸ö²»±»ÐÞ¸´¶øÌÔÌ­µÄ¸ÅÂÊ£»
¢Ú¼ÇÕâ5¸öÁã¼þ±»ÐÞ¸´µÄ¸öÊýÎªËæ»ú±äÁ¿X£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¼ºÖªº¯Êýf£¨x£©=x-a1nx£¨a¡Ù0£¬a¡ÊR£©£®
£¨¢ñ£©ÌÖÂÛf£¨x£©µÄ¼«Öµ£»
£¨¢ò£©ÉèA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¨0£¼x1£¼x2£©ÊÇÇúÏßy=f£¨x£©Éϲ»Í¬Á½µã£¬Èô´æÔÚt¡Ê£¨x1£¬x2£©£¬Ê¹µÃy=f£¨x£©ÔÚ£¨t£¬f£¨t£©£©´¦µÄÇÐÏßÓëÖ±ÏßABƽÐУ¬ÇóÖ¤£ºt£¼$\frac{{x}_{1}+{x}_{2}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬·½¸ñÖ½ÖÐСÕý·½Ðεı߳¤Îª1£¬Ôò´Ë¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{4}{3}$B£®$\frac{2}{3}$C£®2D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªF1¡¢F2Ϊ˫ÇúÏßEµÄ×ó¡¢ÓÒ½¹µã£¬µãMÔÚEÉÏ£¬¡÷F1F2MΪµÈÑüÈý½ÇÐΣ¬ÇÒ¶¥½ÇΪ120¡ã£¬ÔòEµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{5}+1}{2}$B£®$\frac{\sqrt{3}}{2}$+1C£®$\frac{\sqrt{3}+1}{2}$D£®$\frac{\sqrt{2}+1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸