精英家教网 > 高中数学 > 题目详情
15.将下列指数式化为对数式,对数式化为指数式.
(1)3-2=$\frac{1}{9}$;
(2)1og${\;}_{\frac{1}{3}}$9=-2;
(3)1g0.001=-3.

分析 直接利用指数式与对数式的互化,写出结果即可.

解答 解:(1)3-2=$\frac{1}{9}$;可得-2=1og3$\frac{1}{9}$.
(2)1og${\;}_{\frac{1}{3}}$9=-2;($\frac{1}{3}$)-2=9.
(3)1g0.001=-3.0.001=10-3

点评 本题考查指数式与对数式的互化,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=logax(a>0,a≠1),若f(x1x2…x2015)=8,则f(${x}_{1}^{2}$)+f(${x}_{2}^{2}$)+…+f(${x}_{2015}^{2}$)的值为(  )
A.4B.8C.16D.2loga8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-mx+m-1.
(1)若函数f(x)为偶函数.求m的值.
(2)若函数f(x)在(-1,1)上为单调函数,求m的取值范围.
(3)若函数y=|f(x)|在[2,4]上单调递增,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=$\sqrt{1+sinx}$+$\sqrt{1-sinx}$
(1)求函数的定义域和值域;
(2)用定义判定函数的奇偶性;
(3)作函数在[0,π]内的图象;
(4)求函数的最小正周期及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式log2(2x+3)>log2(5x-6)的解集为(  )
A.(-∞,3)B.(-$\frac{3}{2}$,3)C.(-$\frac{3}{2}$,$\frac{6}{5}$)D.($\frac{6}{5}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在R上的偶函数f(x),对任意的实数x都有f(x+4)=-f(x)+2,且f(-3)=3,则f(2015)=(  )
A.-1B.3C.2015D.-4028

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.对于函数f(x),若对于任意的a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=1+$\frac{t-1}{{e}^{x}+1}$是“可构造三角形函数”,则实数t的取值范围是[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a>0,b>0,则(  )
A.若2a+log2a=2b+log3b,则a<bB.若2a+log2a=2b+log3b,则a>b
C.若2a+log2a=3b+log2b,则a<bD.若2a+log2a=3b+log2b,则a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.直线H的方程是y=$\sqrt{3}$x+1,直线L的倾斜角是直线H的倾斜角2倍,且L过点P(1,-1),求直线L的方程.

查看答案和解析>>

同步练习册答案