精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=aln x+ (a∈R).

(1)当a=1时,求f(x)在x∈[1,+∞)内的最小值;

(2)若f(x)存在单调递减区间,求a的取值范围;

(3)求证ln(n+1)> +…+ (n∈N*).

【答案】见解析

【解析】(1)当a=1时,f(x)=ln x+,定义域为(0,+∞).

因为f′(x)=>0,

所以f(x)在(0,+∞)上是增函数,所以f(x)在x∈[1,+∞)内的最小值为f(1)=1.

(2)f′(x)=,因为f(x)存在单调递减区间,所以f′(x)<0有正数解,即ax2+2(a-1)x+a<0有正数解.

①当a=0时,明显成立.

②当a<0时,h(x)=ax2+2(a-1)x+a是开口向下的抛物线,所以ax2+2(a-1)x+a<0有正数解.

③当a>0时,h(x)=ax2+2(a-1)x+a是开口向上的抛物线,即方程ax2+2(a-1)x+a=0有正根.

因为x1x2=1>0,所以方程ax2+2(a-1)x+a=0有两正根,

所以解得0<a<.

综合①②③知,a<.

(3)证明:当n=1时,ln(n+1)=ln 2,

∵3ln 2=ln 8>1,∴ln 2>,即当n=1时,不等式成立.

设当n=k时,ln(k+1)> +…+成立.

当n=k+1时,ln(n+1)=ln(k+2)=ln(k+1)+ln>+…++ln.

根据(1)的结论可知,当x>1时,ln x+>1,即ln x>.

令x=,所以ln>,则有ln(k+2)> +…+,即当n=k+1时,不等式也成立.

综上可知不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量,向量,函数.

I)求单调递减区间;

II)已知分别为内角的对边,为锐角,,且恰是上的最大值,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.

(1)求M的轨迹方程;

(2)当|OP|=|OM|时,求l的方程及△POM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P到定点F(1,0)和到直线x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合).

(1)求曲线E的方程;

(2)当直线l与圆x2+y2=1相切时,四边形ABCD的面积是否有最大值?若有,求出其最大值及对应的直线l的方程;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数);

(2)若对任意恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:

①样本方差反映的是所有样本数据与样本平均值的偏离程度;

②某只股票经历了10个跌停(下跌10%)后需再经过10个涨停(上涨10%)就可以回到原来的净值;

③某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部数学平均分分别是a、b,则这两个级部的数学平均分为

④某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800名学生从1到800进行编号.已知从497~513这16个数中取得的学生编号是503,则初始在第1小组1~16中随机抽到的学生编号是7.

其中真命题的个数是( )

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差x/℃

10

11

13

12

8

发芽数y/颗

23

25

30

26

16

(1)从这5天中任选2天,记发芽的种子数分别为m,n,求事件“m,n均不小于25”的概率;

(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y关于x的线性回归方程x+

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2+ax+b(a,b∈R)的定义域为[-1,1],且|f(x)|的最大值为M.

(1)证明:|1+b|≤M;

(2)证明:M≥.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂今年拟举行促销活动,经调查测算,该厂产品的年销售量(即该厂的年产量)x(万件)与年促销费m(万元)(m≥0)满足x=3-.已知今年生产的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

(1)将今年该产品的利润y万元表示为年促销费m(万元)的函数;

(2)求今年该产品利润的最大值,此时促销费为多少万元?

查看答案和解析>>

同步练习册答案