精英家教网 > 高中数学 > 题目详情

(本小题满分12分)盒子里装有6件包装完全相同的产品,已知其中有2件次品,其余4件是合格品。为了找到2件次品,只好将盒子里的这些产品包装随机打开检查,直到两件次品被全部检查或推断出来为止。记表示将两件次品被全部检查或推断出来所需检查次数。
(I)求两件次品被全部检查或推断出来所需检查次数恰为4次的概率;
(II)求的分布列和数学期望。

(I)所求概率为(II)分布列如表:


2
3
4
5
P




解析试题分析:解:(1)检查次数为4次包含两类情况:
①前3次检查中有一个次品,第4次检查出次品,其概率为----2分
②前4次检查全部是合格品,余下两件必是次品,其概率为,----2分
所以所求概率为,-------5分
(2)的可能取值为2,3,4,5-----------6分

(一个1分)---------10分
分布列如表:


2
3
4
5
P




所以--------12分
考点:古典概型的概率;的分布列和数学期望。
点评:本题需要跟随机变量服从二项分布相区分。要看随机变量是否服从二项分布,关键看是否是重复独立试验。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,求:
(1)点P在直线上的概率;
(2)点P在圆外的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在8,9,10环,且每次射击击中与否互不影响.甲、乙射击命中环数的概率如表:

 
8环
9环
10环

0.2
0.45
0.35

0.25
0.4
0.35
(Ⅰ)若甲、乙两运动员各射击1次,求甲运动员击中8环且乙运动员击中9环的概率;
(Ⅱ)若甲、乙两运动员各自射击2次,求这4次射击中恰有3次击中9环以上(含9环)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分) 某工厂组织工人参加上岗测试,每位测试者最多有三次机会,一旦某次测试通过,便可上岗工作,不再参加以后的测试;否则就一直测试到第三次为止。设每位工人每次测试通过的概率依次为0.2,0.5,0.5,每次测试相互独立。
(1)求工人甲在这次上岗测试中参加考试次数为2、3的概率分别是多少?
(2)若有4位工人参加这次测试,求至少有一人不能上岗的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试。已知每一项测试都是相互独立的,该生参加A、B、C、D四项考试不合格的概率均为,参加第五项不合格的概率为
⑴求该生被录取的概率;
⑵记该生参加考试的项数为,求的分布列和期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设关于的一元二次方程.
(1)若都是从集合中任取的数字,求方程有实根的概率;
(2)若是从区间[0,4]中任取的数字,是从区间[1,4]中任取的数字,求方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球。
(1)试问:一共有多少种不同的结果?请列出所有可能的结果;
(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,平面区域中的点的坐标满足,从区域中随机取点
(Ⅰ)若,求点位于第四象限的概率;
(Ⅱ)已知直线与圆相交所截得的弦长为,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在某学校组织的一次篮球定点投篮训练中,规定每人最多投次:在处每投进一球得分,在处每投进一球得分;如果前两次得分之和超过分即停止投篮,否则投第三次.某同学在处的命中率,在处的命中率为,该同学选择先在处投一球,以后都在处投,用表示该同学投篮训练结束后所得的总分,其分布列为


0
2
3
4
5






(1) 求的值;(2) 求随机变量的数学期望;
(3) 试比较该同学选择都在处投篮得分超过分与选择上述方式投篮得分超过分的概率的大小.

查看答案和解析>>

同步练习册答案