精英家教网 > 高中数学 > 题目详情
2.G(x)表示函数y=2cosx+3的导数,在区间[0,π]上随机取值a,G(a)<-1的概率为$\frac{2}{3}$.

分析 先求出G(x)的解析式,再根据所给的不等式解出a的范围,再结合几何概率模型的公式P=$\frac{事件A包含区域(长度,面积,体积)}{总的事件区域(长度,面积,体积)}$,得到答案.

解答 解:∵G(x)表示函数y=2cosx+3的导数,
∴G(x)=-2sinx,
∵G(a)<-1,
∴-2sina<-1而x∈[0,π],
解得x∈($\frac{π}{6}$,$\frac{5}{6}$π).
由几何概率模型的公式P=$\frac{事件A包含区域(长度,面积,体积)}{总的事件区域(长度,面积,体积)}$,得:
P=$\frac{\frac{5π}{6}-\frac{π}{6}}{π-0}$=$\frac{2}{3}$,
故答案为:$\frac{2}{3}$.

点评 本题主要考查了几何概型的概率,解决此类问题的关键是熟练掌握关于三角不等式的求解与几何概率模型的公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知y=1-cos$\frac{x}{2}$,在下列(  )区间上是增函数.
A.[kπ,kπ+$\frac{π}{2}$](k∈Z)B.[4kπ,4kπ+2π](k∈Z)C.[4kπ,4kπ+$\frac{π}{2}$](k∈Z)D.[2kπ,(2k+1)π](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设等比数列{an}的前n项和为Sn,若27a3-a6=0,则$\frac{{S}_{6}}{{S}_{3}}$=28.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过抛物线y2=4x的焦点作垂直于x轴的直线l交抛物线于A,B两点,则|AB|等于(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等差数列{an}中,a1=-2015,其前n项和为Sn.若$\frac{{{S_{12}}}}{12}-\frac{{{S_{10}}}}{10}$=2,则S2015的值等于(  )
A.-2014B.-2015C.-2013D.-2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=x2+ax+b(a,b∈R).
(1)若g(x)=$\frac{f(x)}{x+1}$,当a=1,b=2时,求g(x)在[0,1]上的最小值;
(2)若h(x)=f(2x-2-x)+22x+2-2x,b=2,求h(x)在[1,+∞)上的最小值m(a)的解析式;
(3)若存在x∈[0,1],使得f(x)=0,且0≤b-2a≤1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:
(1)3$\sqrt{3}$÷$\root{3}{1.5}÷\root{6}{12}$;
(2)[(0.027${\;}^{\frac{2}{3}}$)-1.5]${\;}^{\frac{1}{3}}$+[810.25-(-32)0.6-0.02×($\frac{1}{10}$)-2]${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\left\{\begin{array}{l}{4-{x}^{2}(x>0)}\\{1-2x(x<0)}\end{array}\right.$,
(1)画出函数f(x)图象;
(2)若f(m)=2.求m的值;
(3)关于x的方程f(x)=a有两解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=loga(a-ax)(0<a<1).
(1)求函数的定义域、值域;
(2)求函数的单调区间.

查看答案和解析>>

同步练习册答案