精英家教网 > 高中数学 > 题目详情
如果函数f(x)=ax2-3x+4在区间(-∞,6)上单调递减,则实数a的取值范围是______.
[0,]
(1)当a=0时,f(x)=-3x+4,函数在定义域R上单调递减,故在区间(-∞,6)上单调递减.(2)当a≠0时,二次函数f(x)图象的对称轴为直线x=.因为f(x)在区间(-∞,6)上单调递减,所以a>0,且≥6,解得0<a≤.综上所述,0≤a≤.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)判定并证明函数的奇偶性;
(2)试证明在定义域内恒成立;
(3)当时,恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
证明:(1)存在唯一,使
(2)存在唯一,使,且对(1)中的.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

现有四个函数:①;②;③;④的部分图象如下:

则按照从左到右图象对应的函数序号排列正确的一组是( )
A.①④②③B.①④③② C.④①②③ D.③④②①

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x3+3x对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在区间(0,+∞)上的函数f(x)满足f()=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)判断f(x)的单调性;
(3)若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2014·合肥模拟]f(x)是定义在(0,+∞)上的单调递增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f(x)+f(x-8)≤2时,x的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)是定义在实数集R上的函数,满足条件y=f(x+1)是偶函数,且当x≥1时,f(x)=()x-1,则f(),f(),f()的大小关系是        (  )
A.f()>f()>f()
B.f()>f()>f()
C.f()>f()>f()
D.f()>f()>f()

查看答案和解析>>

同步练习册答案