分析 an+1=SnSn+1,可得Sn+1-Sn=SnSn+1,$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}$=-1,再利用等差数列的通项公式即可得出.
解答 解:∵an+1=SnSn+1,∴Sn+1-Sn=SnSn+1,
∴$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}$=-1,
∴数列$\{\frac{1}{{S}_{n}}\}$是等差数列,首项为-1,公差为-1.
∴$\frac{1}{{S}_{n}}$=-1-(n-1)=-n,
解得Sn=-$\frac{1}{n}$.
故答案为:$-\frac{1}{n}$.
点评 本题考查数列递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x2 | B. | y=log2$\frac{1}{x}$ | C. | y=-x | D. | y=($\frac{1}{2}$)x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2,3} | B. | {2,3,4} | C. | {0,2,4} | D. | {0,2,3,4} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com