分析 (1)在锐角△ABC中,根据条件利用正弦定理可得 (sinB-2sinC)cosA=sinA(-cosB),化简可得cosA=$\frac{1}{2}$,由此可得A的值.
(2)由正弦定理可得 $\frac{b}{sinB}$=$\frac{c}{sinC}$=$\frac{a}{sinA}$=2,可得b+c=2(sinB+sinC)=2 $\sqrt{3}$sin(B+$\frac{π}{6}$).由 $\left\{\begin{array}{l}{0<B<\frac{π}{2}}\\{0<\frac{2π}{3}-B<\frac{π}{2}}\end{array}\right.$求得B的范围,再利用正弦函数的定义域和值域求得b+c的取值范围.
解答 解:(1)在锐角△ABC中,根据(b-2c)cosA=a-2acos2 $\frac{B}{2}$=a-2a•$\frac{1+cosB}{2}$,
利用正弦定理可得 (sinB-2sinC)cosA=sinA(-cosB),
即 sinBcosA+cosBsinA=2sinCcosA,即sin(B+A)=2sinCcosA,
即sinC=2sinCcosA,∴cosA=$\frac{1}{2}$,∴A=$\frac{π}{3}$.
(2)若a=$\sqrt{3}$,则由正弦定理可得 $\frac{b}{sinB}=\frac{c}{sinC}$=$\frac{a}{sinA}$=2,
∴b+c=2(sinB+sinC)=2[sinB+sin( $\frac{2π}{3}$-B)]=3sinB+$\sqrt{3}$cosB=2$\sqrt{3}$sin(B+$\frac{π}{6}$).
由于 $\left\{\begin{array}{l}{0<B<\frac{π}{2}}\\{0<\frac{2π}{3}-B<\frac{π}{2}}\end{array}\right.$,求得 $\frac{π}{6}$<B<$\frac{π}{2}$,∴$\frac{π}{3}$<B+$\frac{π}{6}$<$\frac{2π}{3}$.
∴sin(B+$\frac{π}{6}$)∈( $\frac{\sqrt{3}}{2}$,1],∴b+c∈(3,2 $\sqrt{3}$].
点评 本题主要考查正弦定理的应用,正弦函数的定义域和值域,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | “?x∈R,x2>0””的否定是“?x0∈R,x02≤0” | |
| B. | “?x0∈R,x02<0”的否定是“?x∈R,x2<0” | |
| C. | “?θ∈R,sinθ≤1”的否定是?θ0∈R,sinθ0>1 | |
| D. | “?θ0∈R,sinθ0+cosθ0<1”的否定是“?θ∈R,sinθ+cosθ≥1” |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com