分析 设x=tanα>0,y=tanβ>0,代入已知条件,运用三角函数恒等变换公式,化简整理,即可得到所求值.
解答 解:设x=tanα>0,y=tanβ>0,
则($\sqrt{{x}^{2}+1}$-x+1)($\sqrt{{y}^{2}+1}$-y+1)=2
即为($\sqrt{1+ta{n}^{2}α}$-tanα+1)($\sqrt{1+ta{n}^{2}β}$-tanβ+1)=2,
即有(secα-tanα+1)(secβ-tanβ+1)=2,
即$\frac{1-sinα+cosα}{cosα}$•$\frac{1-sinβ+cosβ}{cosβ}$=2,
由$\frac{2co{s}^{2}\frac{α}{2}-2sin\frac{α}{2}cos\frac{α}{2}}{(cos\frac{α}{2}-sin\frac{α}{2})(cos\frac{α}{2}+sin\frac{α}{2})}$=$\frac{2cos\frac{α}{2}}{cos\frac{α}{2}+sin\frac{α}{2}}$=$\frac{2}{1+tan\frac{α}{2}}$,
可得$\frac{2}{1+tan\frac{α}{2}}$•$\frac{2}{1+tan\frac{β}{2}}$=2,
即有(1+tan$\frac{α}{2}$)(1+tan$\frac{β}{2}$)=2,
即tan$\frac{α}{2}$+tan$\frac{β}{2}$=1-tan$\frac{α}{2}$tan$\frac{β}{2}$,
可得tan$\frac{α+β}{2}$=$\frac{tan\frac{α}{2}+tan\frac{β}{2}}{1-tan\frac{α}{2}tan\frac{β}{2}}$=1,
由α,β为锐角,可得$\frac{α+β}{2}$=45°,
则α+β=90°,
即有xy-2=tanαtanβ-2=tanαtan(90°-α)-2
=tanαcotα-2=1-2=-1.
故答案为:-1.
点评 本题考查运用三角换元求值的方法,考查三角函数的恒等变换公式的运用,考查化简运算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{4}{5}$ | C. | 1 | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2,3} | B. | {2,3,4} | C. | {0,2,4} | D. | {0,2,3,4} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com