精英家教网 > 高中数学 > 题目详情
16.设x>0,y>0,已知($\sqrt{{x}^{2}+1}$-x+1)($\sqrt{{y}^{2}+1}$-y+1)=2,则xy-2=-1.

分析 设x=tanα>0,y=tanβ>0,代入已知条件,运用三角函数恒等变换公式,化简整理,即可得到所求值.

解答 解:设x=tanα>0,y=tanβ>0,
则($\sqrt{{x}^{2}+1}$-x+1)($\sqrt{{y}^{2}+1}$-y+1)=2
即为($\sqrt{1+ta{n}^{2}α}$-tanα+1)($\sqrt{1+ta{n}^{2}β}$-tanβ+1)=2,
即有(secα-tanα+1)(secβ-tanβ+1)=2,
即$\frac{1-sinα+cosα}{cosα}$•$\frac{1-sinβ+cosβ}{cosβ}$=2,
由$\frac{2co{s}^{2}\frac{α}{2}-2sin\frac{α}{2}cos\frac{α}{2}}{(cos\frac{α}{2}-sin\frac{α}{2})(cos\frac{α}{2}+sin\frac{α}{2})}$=$\frac{2cos\frac{α}{2}}{cos\frac{α}{2}+sin\frac{α}{2}}$=$\frac{2}{1+tan\frac{α}{2}}$,
可得$\frac{2}{1+tan\frac{α}{2}}$•$\frac{2}{1+tan\frac{β}{2}}$=2,
即有(1+tan$\frac{α}{2}$)(1+tan$\frac{β}{2}$)=2,
即tan$\frac{α}{2}$+tan$\frac{β}{2}$=1-tan$\frac{α}{2}$tan$\frac{β}{2}$,
可得tan$\frac{α+β}{2}$=$\frac{tan\frac{α}{2}+tan\frac{β}{2}}{1-tan\frac{α}{2}tan\frac{β}{2}}$=1,
由α,β为锐角,可得$\frac{α+β}{2}$=45°,
则α+β=90°,
即有xy-2=tanαtanβ-2=tanαtan(90°-α)-2
=tanαcotα-2=1-2=-1.
故答案为:-1.

点评 本题考查运用三角换元求值的方法,考查三角函数的恒等变换公式的运用,考查化简运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若F1、F2是双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的左右焦点,M是双曲线右支上一动点,则$\frac{1}{|M{F}_{2}|}$-$\frac{1}{|M{F}_{1}|}$的最大值为(  )
A.$\frac{3}{4}$B.$\frac{4}{5}$C.1D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,设命题p:椭圆C:$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{8-m}$=1的焦点在x轴上;命题q:直线l:x-y+m=0与圆O:x2+y2=9有公共点. 若命题p、命题q中有且只有一个为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2x+a•2-x是定义域为R的奇函数.
(I)求实数a的值;
(Ⅱ)证明f(x)是R上是单调函数;
(Ⅲ)若对于任意的μ>0,不等式f[(lgμ)2-lgμ2]+f[(lgμ)2-k]>0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2).数列{bn}满足bn=an•an+1,Tn为数列{bn}的前n项和.
(1)证明:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(2)若对任意的n∈N*,不等式λTn<n+12•(-1)n恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:所有等差数列{an}的前n项和是Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$,命题q:有的等比数列{an}的前n项和不是Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$(q是公比).
(1)写出¬p和¬q,并判断真假.
(2)写出p∧q、p∨q、(¬p)∧q、(¬q)∨p.并判断真假.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知在锐角△ABC中,a,b,c分别为角A,B,C所对的边长,且(b-2c)cosA=a-2acos2$\frac{B}{2}$.
(1)求角A的值;
(2)若a=$\sqrt{3}$,且△ABC是锐角三角形.求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={1,2,3},B={x|x2-(a+1)x+a=0,x∈R},若A∪B=A,求实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁UA)∪B=(  )
A.{1,2,3}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}

查看答案和解析>>

同步练习册答案