分析 假设l与AB不是异面直线,那么它们在同一个平面上,记这个平面为γ,由此能推导出A在α与β的交线l上,与已知点A∉直线l,点B∉直线l相互矛盾.从而得到l与AB是异面直线.
解答 解:假设l与AB不是异面直线,
那么它们在同一个平面上,记这个平面为γ.
∵A和l都在平面γ上,
∴由它们决定的平面α在平面γ上,
∴平面γ=平面α.同理γ=平面β.
∴α=β,∵A∈α,∴A∈β,
所以A在α与β的交线l上,与已知点A∉直线l,点B∉直线l相互矛盾.
∴假设不成立,
∴l与AB是异面直线.
故答案为:异面.
点评 本题考查两直线的位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| f(1)=-2 | f(1.5)=0.625 |
| f(1.25)=-0.984 | f(1.375)=-0.260 |
| f(1.438)=0.165 | f(1.4065)=-0.052 |
| A. | 1.2 | B. | 1.3 | C. | 1.4 | D. | 1.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com