精英家教网 > 高中数学 > 题目详情
2.双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{7}$=1的焦距为8.

分析 由双曲线的标准方程可知:a2=9,b2=7,则c2=a2+b2=16,即可求得c,则焦距为2c=8.

解答 解:由双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{7}$=1可知:a2=9,b2=7,
则c2=a2+b2=16,
∴c=4,
焦距2c=8,
故答案为:8.

点评 本题考查双曲线的标准方程及简单性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列函数中,在区间(0,+∞)上单调递增的是(  )
A.y=$\frac{x}{x+1}$B.y=1-xC.y=x2-xD.y=1-x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=1-ax+lnx,(x>0),函数g(x)满足g(x)=x-1,(x∈R).
(1)若函数f(x)在x=1时存在极值,求a的值;
(2)在(1)的条件下,当x>1时,blnx<$\frac{f(x)}{g(x)}$,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.甲用1000元人民币购买了一支股票,随即他将这支股票卖给乙,甲获利10%,而后乙又将这支股票返卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格九折将这支股票卖给了乙,在上述股票交易中(  )
A.甲刚好盈亏平衡B.甲盈利1元C.甲盈利9元D.甲亏本1.1元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△OAB中,C为边AB上任意一点,D为OC上靠近O的一个三等分点,若$\overline{OD}$=λ$\overline{OA}$+μ$\overline{OB}$,则λ+μ的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,设命题p:椭圆C:$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{8-m}$=1的焦点在x轴上;命题q:直线l:x-y+m=0与圆O:x2+y2=9有公共点. 若命题p、命题q中有且只有一个为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某工厂一年中第十二个月的产量是第一个月产量的a倍,那么该工厂这一年的月平均增长率是(  )
A.$\frac{a}{11}$B.$\frac{a}{12}$C.$\root{12}{a}$-1D.$\root{11}{a}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2).数列{bn}满足bn=an•an+1,Tn为数列{bn}的前n项和.
(1)证明:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(2)若对任意的n∈N*,不等式λTn<n+12•(-1)n恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设点A∈平面α,点B∈平面β,α∩β=l,且点A∉直线l,点B∉直线l,则直线l与过A、B两点的直线的位置关系异面.

查看答案和解析>>

同步练习册答案