| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | 1 |
分析 由已知可得$\overrightarrow{OC}$=3λ$\overline{OA}$+3μ$\overline{OB}$,由C为边AB上任意一点,根据三点共线的充要条件,可得:3λ+3μ=1,进而得到答案.
解答 解:∵D为OC上靠近O的一个三等分点,
∴3$\overline{OD}$=$\overrightarrow{OC}$,
又∵$\overline{OD}$=λ$\overline{OA}$+μ$\overline{OB}$,
∴$\overrightarrow{OC}$=3λ$\overline{OA}$+3μ$\overline{OB}$,
∵C为边AB上任意一点,
∴3λ+3μ=1,
故λ+μ=$\frac{1}{3}$,
故选:B
点评 本题考查的知识点是平面向量在几何中的应用,三点共线的充要条件,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2016}{2017}$ | B. | $\frac{2017}{2016}$ | C. | $\frac{2015}{2017}$ | D. | $\frac{2015}{2016}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若l∥α,l∥β,则α∥β | B. | 若l∥α,α∥β,则l∥β | C. | 若l⊥α,l∥β,则α⊥β | D. | 若l⊥α,l⊥β,则α⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com