精英家教网 > 高中数学 > 题目详情
7.已知等差数列{an}的前n项和为Sn,且a5=5,S5=15,则数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前2016项和为(  )
A.$\frac{2016}{2017}$B.$\frac{2017}{2016}$C.$\frac{2015}{2017}$D.$\frac{2015}{2016}$

分析 由题意可知:S5=$\frac{5({a}_{1}+{a}_{5})}{2}$=15,求得a1=1,则a5=a1+4d=5,即可求得d=1,根据等差数列前n项和公式即可求得an=n,则$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,采用“裂项法”即可求得数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前2016项和.

解答 解:设等差数列{an}公差为d,
∵a5=5,S5=15,
由S5=$\frac{5({a}_{1}+{a}_{5})}{2}$=15,解得:a1=1,
a5=a1+4d=5,则d=1,
等差数列{an}首项为1,公差为1,
an=a1+(n-1)d=n,
$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前2016项和S2016,S2016=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{2016}$-$\frac{1}{2017}$),
=1-$\frac{1}{2017}$,
=$\frac{2016}{2017}$,
故选A.

点评 本题考查等差数列的通项公式及前n项和公式,“裂项法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数y=f(x)是定义在[-4,4]上的偶函数,且f(x)=$\left\{\begin{array}{l}{{3}^{x}-9,0≤x≤4}\\{g(x),-4≤x<0}\end{array}\right.$,则不等式(1-2x)g(log2x)<0的解集用区间表示为($\frac{1}{4}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\vec a=(\frac{{\sqrt{3}}}{2}sinx,2cosx)$,$\vec b=(2cosx,\frac{1}{2}cosx)$,记函数$f(x)=\vec a•\vec b+m$
(1)求函数f(x)的最小正周期;
(2)如果函数f(x)的最小值为1,求m的值,并求此时f(x)的最大值及图象的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)是R上的奇函数,且满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x-1,则方程f(x)=log6(x-3)在(0,+∞)解的个数是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若两个等差数列{an}、{bn}的前n项和分别为Sn、Tn,且$\frac{S_n}{T_n}=\frac{2n+1}{n+2}(n∈{N^*})$,则$\frac{a_7}{b_7}$等于(  )
A.2B.$\frac{5}{3}$C.$\frac{9}{5}$D.$\frac{31}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,在区间(0,+∞)上单调递增的是(  )
A.y=$\frac{x}{x+1}$B.y=1-xC.y=x2-xD.y=1-x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.计算:log23•log94=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)、∁R(A∩B)、(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△OAB中,C为边AB上任意一点,D为OC上靠近O的一个三等分点,若$\overline{OD}$=λ$\overline{OA}$+μ$\overline{OB}$,则λ+μ的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.1

查看答案和解析>>

同步练习册答案