精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)是R上的奇函数,且满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x-1,则方程f(x)=log6(x-3)在(0,+∞)解的个数是(  )
A.6B.5C.4D.3

分析 根据已知,在同一坐标系中做出:函数f(x)的图象与y=log6(x-3)的图象,分析两函数交点的个数,可得答案.

解答 解:∵函数f(x)是R上的奇函数,且满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x-1,
故函数f(x)的图象如下图所示:

由图可得:函数f(x)的图象与y=log6(x-3)的图象有4个交点,
故方程f(x)=log6(x-3)在(0,+∞)有4个解,
故选:C

点评 本题考查的知识点是根的存在性及根的个数判断,函数的图象,数形结合思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知三点A(1,-1),B(3,0),C(2,1),P为平面ABC上的一点,$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,且$\overrightarrow{AP}$•$\overrightarrow{AB}$=0,$\overrightarrow{AP}$•$\overrightarrow{AC}$=3.
(1)求$\overrightarrow{AB}$•$\overrightarrow{AC}$;
(2)求λ+μ 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,输出p的值是(  )
A.5B.1C.$\frac{1}{7}$D.$\frac{1}{63}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若f(lgx)=x,则f(3)=(  )
A.103B.3C.310D.lg3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)y=sinwx在(0,1)至多有三个最大值,求(w>0)
(2)y=sin(wx+$\frac{π}{3}$)在(0,1)至多有三个最大值,求w的取值范围(w>0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等比数列{an}的前n项和记为Sn,若S4=2,S8=6,则S12等于(  )
A.8B.10C.12D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等差数列{an}的前n项和为Sn,且a5=5,S5=15,则数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前2016项和为(  )
A.$\frac{2016}{2017}$B.$\frac{2017}{2016}$C.$\frac{2015}{2017}$D.$\frac{2015}{2016}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{{{2^x}-a}}{{{2^x}+a}}$(a>0)在其定义域上为奇函数.
(1)求a的值;
(2)判断函数f(x)的单调性,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>$\sqrt{2}$)的两条渐近线的夹角为$\frac{π}{3}$,则双曲线的离心率为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案