精英家教网 > 高中数学 > 题目详情
17.已知函数y=f(x)是定义在[-4,4]上的偶函数,且f(x)=$\left\{\begin{array}{l}{{3}^{x}-9,0≤x≤4}\\{g(x),-4≤x<0}\end{array}\right.$,则不等式(1-2x)g(log2x)<0的解集用区间表示为($\frac{1}{4}$,$\frac{1}{2}$).

分析 利用函数的奇偶性求函数g(x)的解析式,再利用g(x)得单调性解对数不等式,求得x的范围.

解答 解:函数y=f(x)是定义在[-4,4]上的偶函数,
且f(x)=$\left\{\begin{array}{l}{{3}^{x}-9,0≤x≤4}\\{g(x),-4≤x<0}\end{array}\right.$,则g(x)=3-x-9,故g(x)的零点为-2.
由不等式(1-2x)g(log2x)<0,可得$\left\{\begin{array}{l}{1-2x<0}\\{g(_{log2}x)>0}\end{array}\right.$ ①,或$\left\{\begin{array}{l}{1-2x>0}\\{g{(log}_{2}x)<0}\end{array}\right.$②.
由①可得$\left\{\begin{array}{l}{x>\frac{1}{2}}\\{{-4≤log}_{2}x<-2}\end{array}\right.$,∴x∈∅.
由②可得$\left\{\begin{array}{l}{x<\frac{1}{2}}\\{{-2<log}_{2}x≤0}\end{array}\right.$,∴$\frac{1}{4}$<x<$\frac{1}{2}$,
故答案为:($\frac{1}{4}$,$\frac{1}{2}$).

点评 本题主要考查利用函数的奇偶性求函数的解析式,解对数不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知圆M:x2+y2-2x+a=0.
(1)若a=-8,过点P(4,5)作圆M的切线,求该切线方程;
(2)若AB为圆M的任意一条直径,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=-6(其中O为坐标原点),求圆M的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,角A,B,C的对边分别为a,b,c,且a,b,c成等差数列,有下列四个结论:①b2≥ac;②$\frac{1}{a}+\frac{1}{c}≥\frac{2}{b}$;③${b^2}≤\frac{{{a^2}+{c^2}}}{2}$;④$B∈({0,\frac{π}{3}}]$.其中正确的结论序号为①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知三点A(1,-1),B(3,0),C(2,1),P为平面ABC上的一点,$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,且$\overrightarrow{AP}$•$\overrightarrow{AB}$=0,$\overrightarrow{AP}$•$\overrightarrow{AC}$=3.
(1)求$\overrightarrow{AB}$•$\overrightarrow{AC}$;
(2)求λ+μ 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=loga(x+1)+b,(a>0,且a≠1)的图象恒过点A(m,3),则b+m的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.拟用长度为l的钢筋焊接一个如图所示的矩形框架结构(钢筋体积、焊接点均忽略不计),其中G、H分别为框架梁MN、CD的中点,MN∥CD,设框架总面积为S平方米,BN=2CN=2x米.
(1)若S=18平方米,且l不大于27米,试求CN长度的取值范围;
(2)若l=21米,求当CN为多少米时,才能使总面积S最大,并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a$=(1,m+1),$\overrightarrow b$=(m,2),则$\overrightarrow a$∥$\overrightarrow b$的充要条件是m=-2或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,输出p的值是(  )
A.5B.1C.$\frac{1}{7}$D.$\frac{1}{63}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等差数列{an}的前n项和为Sn,且a5=5,S5=15,则数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前2016项和为(  )
A.$\frac{2016}{2017}$B.$\frac{2017}{2016}$C.$\frac{2015}{2017}$D.$\frac{2015}{2016}$

查看答案和解析>>

同步练习册答案