| A. | 3 | B. | -3 | C. | 2或3 | D. | -2或-3 |
分析 利用一元二次方程根与系数的关系可得a2+a8=12,a2a8=m,结合S15=m,得到a2a8=15a8,再分a8=0和a8≠0求得a12,代入等差数列的通项公式求得公差.
解答 解:由题意,a2+a8=12,a2a8=m,
又S15=m,∴$\frac{15({a}_{1}+{a}_{15})}{2}=15{a}_{8}=m$,即a2a8=15a8,
若a8=0,得a2=12,∴d=$\frac{0-12}{8-2}=-2$;
若a8≠0,得a2=15,∴a8=12-a2=12-15=-3,
则d=$\frac{-3-15}{8-2}=-3$.
综上,数列{an}的公差是-2或-3.
故选:D.
点评 本题考查等差数列的通项公式,考查了等差数列的前n项和,体现了分类讨论的数学思想方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2880 | B. | 7200 | C. | 1440 | D. | 60 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{4}$-y2=1 | B. | $\frac{x^2}{4}$-$\frac{y^2}{2}$=1 | C. | $\frac{x^2}{4}$-$\frac{y^2}{3}$=1 | D. | $\frac{x^2}{4}$-$\frac{y^2}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2 | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com