分析 由已知利用三角形面积公式可求得sinC,由0<C<π,解得cosC,由余弦定理即可求得AB的值.
解答 解:∵BC=4,AC=5,S△ABC=5$\sqrt{3}$,
∴5$\sqrt{3}$=$\frac{1}{2}$×4×5×sinC,解得:sinC=$\frac{\sqrt{3}}{2}$,
∵0<C<π,解得cosC=$±\sqrt{1-si{n}^{2}C}$=±$\frac{1}{2}$,
∴由余弦定理可得:AB2=AC2+BC2-2AC•BC•cosC=25+16-10($±\frac{1}{2}$)=36或46,
∴AB=6或$\sqrt{46}$.
故答案为:6或$\sqrt{46}$.
点评 本题主要考查了三角形面积公式,余弦定理,同角三角函数关系式的应用,熟练掌握余弦定理及应用是解题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4x+2y=5 | B. | 4x-2y=5 | C. | x+2y=5 | D. | x-2y=5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com