精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x24
+y2=1
,直线l与椭圆C相交于A、B两点,若以AB为直径的圆经过坐标原点.
(1)试探究:点O到直线AB的距离是否为定值,若是,求出该定值;若不是,请说明理由;
(2)求△AOB面积S的最小值.
分析:(1)设A(x1,y1),B(x2,y2),分类讨论:①当直线AB斜率不存在时,由椭圆的对称性,可求原点O到直线的距离;②当直线AB斜率存在时,设直线AB的方程为y=kx+m,代入椭圆方程,利用韦达定理及点到直线的距离公式,即可得到结论;
(2)利用三角函数表示出|OA|,|OB|,进而可求|OA||OB|的最小值,从而可求△AOB面积S的最小值.
解答:解:(1)设A(x1,y1),B(x2,y2),
①当直线AB斜率不存在时,由椭圆的对称性可知x1=x2,y1=-y2
∵以AB为直径的圆D经过坐标原点,∴
OA
OB
=0

∴x1x2+y1y2=0,∴x12-y12=0
∵x12+4y12=4,∴|x1|=|y1|=
2
5
5

∴原点O到直线的距离为d=|x1|=
2
5
5

②当直线AB斜率存在时,设直线AB的方程为y=kx+m,代入椭圆方程,消元可得(1+4k2)x2+8kmx+4m2-4=0
∴x1+x2=-
8km
1+4k2
,x1x2=
4m2-4
1+4k2

∵以AB为直径的圆D经过坐标原点,∴
OA
OB
=0

∴x1x2+y1y2=0,∴(1+k2
4m2-4
1+4k2
-km×
8km
1+4k2
+m2=0
∴5m2=4(k2+1)
∴原点O到直线的距离为d=
|m|
k2+1
=
2
5
5

综上,点O到直线AB的距离为定值;
(2)由(1)可知,在直角△OAB中,点O到直线AB的距离|OH|=
2
5
5
,设∠OAH=θ,则∠BOH=θ
∴|OA|=
|OH|
sinθ
,|OB|=
|OH|
cosθ

∴|OA||OB|=
8
5
sin2θ

∴2θ=
π
2
,即θ=
π
4
时,|OA||OB|取得最小值为
8
5

∴△AOB面积S的最小值为
4
5
点评:本题考查椭圆的标准方程,考查圆与椭圆的综合,联立方程,利用韦达定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知椭圆C:
x2
4
+y2=1

(1)过椭圆C的右焦点作一条垂直于x轴的垂轴弦MN,求MN的长度;
(2)若点P是椭圆C上不与顶点重合的任意一点,MN是椭圆C的短轴,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0)(如图),求xE?xF的值;
(3)在(2)的基础上,把上述椭圆C一般化为
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一条垂直于x轴的垂轴弦,其它条件不变,试探究xE?xF是否为定值?(不需要证明);请你给出双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
中相类似的结论,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)已知椭圆C:
x2
4
+
y2
3
=1
和点P(4,0),垂直于x轴的直线与椭圆C交于A,B两点,连结PB交椭圆C于另一点E.
(Ⅰ)求椭圆C的焦点坐标和离心率;
(Ⅱ)证明直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知椭圆C:
x2
4
+y2=1
,直线l与椭圆C相交于A、B两点,
OA
OB
=0
(其中O为坐标原点).
(1)试探究:点O到直线AB的距离是否为定值,若是,求出该定值,若不是,请说明理由;
(2)求|OA|•|OB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如图1,已知定点F1(-2,0)、F2(2,0),动点N满足|
ON
|=1(O为坐标原点),
F1M
=2
NM
MP
MF2
(λ∈R),
F1M
PN
=0,求点P的轨迹方程.
精英家教网
(2)如图2,已知椭圆C:
x2
4
+y2=1的上、下顶点分别为A、B,点P在椭圆上,且异于点A、B,直线AP、BP与直线l:y=-2分别交于点M、N,
(ⅰ)设直线AP、BP的斜率分别为k1、k2,求证:k1•k2为定值;
(ⅱ)当点P运动时,以MN为直径的圆是否经过定点?请证明你的结论.

查看答案和解析>>

同步练习册答案