精英家教网 > 高中数学 > 题目详情
(2013•甘肃三模)如图,已知椭圆
x2
4
+
y2
3
=1
的左焦点为F,过点F的直线交椭圆于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.
(Ⅰ)若点G的横坐标为-
1
4
,求直线AB的斜率;
(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.
分析:(Ⅰ)依题意,直线AB的斜率存在,设其方程,代入椭圆方程,利用韦达定理,确定G的横坐标,即可求得直线AB的斜率;
(Ⅱ)假设存在直线AB,使得 S1=S2,确定G,D的坐标,利用△GFD∽△OED,即可得到结论.
解答:解:(Ⅰ)依题意,直线AB的斜率存在,设其方程为y=k(x+1).
将其代入
x2
4
+
y2
3
=1
,整理得 (4k2+3)x2+8k2x+4k2-12=0.
设A(x1,y1),B(x2,y2),所以x1+x2=
-8k2
4k2+3

故点G的横坐标为
x1+x2
2
=
-4k2
4k2+3

依题意,得
-4k2
4k2+3
=-
1
4
,解得k=±
1
2

(Ⅱ)假设存在直线AB,使得 S1=S2,显然直线AB不能与x,y轴垂直.
由(Ⅰ)可得 G(
-4k2
4k2+3
3k
4k2+3
)

因为DG⊥AB,所以 
3k
4k2+3
-4k2
4k2+3
-xD
×k=-1

解得xD=
-k2
4k2+3
,即 D(
-k2
4k2+3
,0)

因为△GFD∽△OED,所以S1=S2,所以|GD|=|OD|.
所以
(
-k2
4k2+3
-
-4k2
4k2+3
)
2
+(
3k
4k2+3
)
2
=|
-k2
4k2+3
|

整理得8k2+9=0.
因为此方程无解,所以不存在直线AB,使得 S1=S2
点评:本题考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•甘肃三模)已知函数y=
x3
3
+
mx2+(m+n)x+1
2
的两个极值点分别为x1,x2,且x1∈(0,1),x2∈(1,+∞),记分别以m,n为横、纵坐标的点P(m,n)表示的平面区域为D,若函数y=loga(x+4)(a>1)的图象上存在区域D内的点,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•甘肃三模)设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxn,则a1+a2+…+a99的值为
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•甘肃三模)在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=
2
,D为AA1的中点,BD与AB1交于点O,CO丄侧面ABB1A1
(Ⅰ)证明:BC⊥AB1
(Ⅱ)若OC=OA,求三棱锥B1-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•甘肃三模)执行如图所示的程序框图,输出的S值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•甘肃三模)观察下列算式:
l3=1,
23=3+5,
33=7+9+11,
43=13+15+17+19,

若某数n3按上述规律展开后,发现等式右边含有“2013”这个数,则n=
45
45

查看答案和解析>>

同步练习册答案