精英家教网 > 高中数学 > 题目详情
如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,M为CD的中点.

(1)求点M的轨迹方程;
(2)过M作AB的垂线,垂足为N,若存在正常数,使,且P点到A、B 的距离和为定值,求点P的轨迹E的方程;
(3)过的直线与轨迹E交于P、Q两点,求面积的最大值.
(1)(2)(3)

试题分析:(1)求动点轨迹方程的步骤,一是设动点坐标M(x, y),二是列出动点满足的条件,三是化简,,四是去杂,x≠0;(2)涉及两个动点问题,往往是通过相关点法求对应轨迹方程,设P(x, y),则,代入M的轨迹方程有,利用椭圆定义解出相关点法也叫转移法,即将未知转移到已知,用未知点坐标表示已知点坐标,是一种化归思想,(3)直线与椭圆位置关系,一般先分析其几何性,再用代数进行刻画.本题中的三角形可分解为两个同底三角形,底长都为,所以三角形面积最大值决定于高,即横坐标差的绝对值,这可结合韦达定理进行列式分析
试题解析:解:(1)设点M的坐标为M(x, y)(x≠0),则 
由AC⊥BD有,即
∴x2+y2=1(x≠0).                        (4分)
(2)设P(x, y),则,代入M的轨迹方程有
,∴P的轨迹为椭圆(除去长轴的两个端点).
要P到A、B的距离之和为定值,则以A、B为焦点,故.
 从而所求P的轨迹方程为.          9分
(3)易知l的斜率存在,设方程为联立9x2+y2=1,有
设P(x1,y1),Q(x2,y2),则
,则

所以当,即也即时,面积取最大值,最大值为.  12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知A,B,C是椭圆W:+y2=1上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆短轴的一个端点为,离心率为.
(1)求椭圆的标准方程;
(2)设直线交椭圆两点,若.求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点y在轴上,焦距为,且过点M
(1)求椭圆C的方程;
(2)若过点的直线l交椭圆C于A、B两点,且N恰好为AB中点,能否在椭圆C上找到点D,使△ABD的面积最大?若能,求出点D的坐标;若不能,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=kx+1,当k变化时,此直线被椭圆+y2=1截得的最大弦长是(  )
A.4B.
C.2D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1, F2是椭圆x2+2y2=6的两个焦点,点M在此椭圆上且∠F1MF2=60°,则△MF1F2的面积等于(  )
A.B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知AB是椭圆=1(ab>0)和双曲线=1(a>0,b>0)的公共顶点.P是双曲线上的动点,M是椭圆上的动点(PM都异于AB),且满足λ(),其中λ∈R,设直线APBPAMBM的斜率分别记为k1k2k3k4k1k2=5,则k3k4=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知动点在椭圆+=1上,若A点的坐标为(3,0),,且,则的最小值为________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P为椭圆=1上的一点,F1F2分别是该椭圆的左、右焦点,若|PF1|∶|PF2|=2∶1,则△PF1F2的面积为(  ).
A.2B.3 C.4D.5

查看答案和解析>>

同步练习册答案