精英家教网 > 高中数学 > 题目详情
9.不等式$\frac{1}{x-1}$<-1的解集为(0,1).

分析 移项,通分,求出不等式的解集即可.

解答 解:∵$\frac{1}{x-1}$<-1,
∴$\frac{1}{x-1}$+$\frac{x-1}{x-1}$<0,
∴$\frac{x}{x-1}$<0,解得:0<x<1,
故不等式的解集是(0,1),
故答案为:(0,1).

点评 本题考查了解不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如图是一几何体的直观图、主视图和俯视图,则该几何体的侧视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某银行推出95577服务电话,部分业务流程如图,如果我要利用这个服务交纳电视费,请问按照这个流程图,我拨通95577电话后如何操作(  )
A.按2,按1,按3B.按5,按1,按3C.按0,按2,按1,按3D.按5,按1,按2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设二项式(x-$\frac{a}{x}$)6的展开式中x2项的系数为A,常数项为B,若B=4A,则非零实数a的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2.
(Ⅰ)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,求|$\overrightarrow{a}+2\overrightarrow{b}$|;
(Ⅱ)若(2$\overrightarrow{a}-b$)$•(3\overrightarrow{a}+\overrightarrow{b})$=3,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆E:(x+1)2+y2=16,点F(1,0),P是圆E上任意一点,线段PE的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹Γ的方程;
(2)点C(1,$\frac{3}{2}$),直线l的方程为x=4,AB是经过F的任一弦(不经过点C),设直线AB与直线l相交于点M,记CA、CB、CM斜率分别为k1、k2、k3,且存在常数λ,使得k1+k2=λk3,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设等差数列{an}的前n项和为Sn,满足a2=4,S5=30.
(1)求数列{an}的通项公式an
(2)令bn=an2n-1,求数列{an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.观察下列式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,…,根据以上式子可以猜想:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{201{6}^{2}}$<$\frac{4031}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=(x+1)lnx-4(x-1)在(1,f(1))处的切线方程为2x+y-2=0.

查看答案和解析>>

同步练习册答案