精英家教网 > 高中数学 > 题目详情
19.函数f(x)=(x+1)lnx-4(x-1)在(1,f(1))处的切线方程为2x+y-2=0.

分析 求出函数的导数,可得切线的斜率和切点,运用点斜式方程可得切线方程.

解答 解:函数f(x)=(x+1)lnx-4(x-1)的导数为f′(x)=lnx+$\frac{x+1}{x}$-4,
可得在(1,f(1))处的切线斜率为k=f′(1)=ln1+2-4=-2,
切点为(1,0),
则在(1,f(1))处的切线方程为y-0=-2(x-1),
即为2x+y-2=0.
故答案为:2x+y-2=0.

点评 本题考查函数导数的运用:求切线方程,考查导数的几何意义,正确求得导数和运用导数的几何意义是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.不等式$\frac{1}{x-1}$<-1的解集为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,在棱长为a的正方体ABCD-A1B1C1D1的面对角线A1B上存在一点P使得AP+D1P取得最小值,若此最小值为$2\sqrt{2+\sqrt{2}}$,则a的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.平面直角坐标系内的向量都可以用一有序实数对唯一表示,这使得我们可以用向量作为解析几何的研究工具,例如,设直线l的倾斜角α(α≠90°),在l上任取两个不同的点P1(x1,y2),P2(x2,y2),不妨设向量$\overrightarrow{{P_1}{P_2}}$的方向是向上的,那么向量$\overrightarrow{{P_1}{P_2}}$的坐标为(x2-x1,y2-y1),过原点作向量$\overrightarrow{OP}$=$\overrightarrow{{P_1}{P_2}}$,则点P的坐标是(x2-x1,y2-y1),而直线OP的倾斜角也是α(α≠90°),根据正切函数的定义得k=tanα=$\frac{{{y_2}-{y_1}}}{{x{\;}_2-{x_1}}}$;利用向量工具研究下列直线Ax+By+C=0,(ABC≠0)有关问题;
(1)、判断向量$\overrightarrow m$=(A,B)与直线Ax+By+C=0的关系,并说明理由;
(2)、直线A1x+B1y+C1=0与直线A2x+B2y+C2=0相交,求两直线夹角的余弦值;
(3)、用向量知识推导点P0(x0,y0)到直线Ax+By+C=0,(ABC≠0)的距离公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.i为虚数单位,若($\sqrt{3}$+i)z=(1-$\sqrt{3}$i),则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=-x2+2|x|.
(Ⅰ)判断并证明函数的奇偶性;
(Ⅱ)写出函数f(x)的单调区间(不需证明);
(Ⅲ)求f(x)在[-3,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=$\frac{2}{x}$-1.
(1)用定义证明f(x)在(0,+∞)上是减函数;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系中,已知第一象限内的点P(a,b)在直线x+2y-2=0上,则$\frac{4}{a+b}$+$\frac{1}{b}$的最小值是$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2x+$\frac{a}{2^x}$是偶函数.
(1)求不等式f(x)<$\frac{5}{2}$的解集;
(2)对任意x∈R,不等式f(2x)≥mf(x)-18恒成立,求实数m的最大值及此时x的取值.

查看答案和解析>>

同步练习册答案