精英家教网 > 高中数学 > 题目详情
7.平面直角坐标系内的向量都可以用一有序实数对唯一表示,这使得我们可以用向量作为解析几何的研究工具,例如,设直线l的倾斜角α(α≠90°),在l上任取两个不同的点P1(x1,y2),P2(x2,y2),不妨设向量$\overrightarrow{{P_1}{P_2}}$的方向是向上的,那么向量$\overrightarrow{{P_1}{P_2}}$的坐标为(x2-x1,y2-y1),过原点作向量$\overrightarrow{OP}$=$\overrightarrow{{P_1}{P_2}}$,则点P的坐标是(x2-x1,y2-y1),而直线OP的倾斜角也是α(α≠90°),根据正切函数的定义得k=tanα=$\frac{{{y_2}-{y_1}}}{{x{\;}_2-{x_1}}}$;利用向量工具研究下列直线Ax+By+C=0,(ABC≠0)有关问题;
(1)、判断向量$\overrightarrow m$=(A,B)与直线Ax+By+C=0的关系,并说明理由;
(2)、直线A1x+B1y+C1=0与直线A2x+B2y+C2=0相交,求两直线夹角的余弦值;
(3)、用向量知识推导点P0(x0,y0)到直线Ax+By+C=0,(ABC≠0)的距离公式.

分析 (1)直线的方向向量为$\overrightarrow{m}$=(-B,A),$\overrightarrow{m}$=(A,B),可得向量$\overrightarrow m$=(A,B)是直线Ax+By+C=0的法向量;
(2)直线A1x+B1y+C1=0与直线A2x+B2y+C2=0相交D,在直线A1x+B1y+C1=0与直线A2x+B2y+C2=0上分别取P,Q,可得两直线夹角的余弦值=|$\frac{\overrightarrow{DP}•\overrightarrow{DQ}}{|\overrightarrow{DP}||\overrightarrow{DQ}|}$|;
(3)利用向量的数量积运算,求出$\overrightarrow{{P}_{0}R}$在直线的单位法向量上的投影的绝对值即可.

解答 解:(1)直线的方向向量为$\overrightarrow{m}$=(-B,A),$\overrightarrow{m}$=(A,B),
∴向量$\overrightarrow m$=(A,B)是直线Ax+By+C=0的法向量;
(2)直线A1x+B1y+C1=0与直线A2x+B2y+C2=0相交D,
在直线A1x+B1y+C1=0与直线A2x+B2y+C2=0上分别取P,Q,则两直线夹角的余弦值=|$\frac{\overrightarrow{DP}•\overrightarrow{DQ}}{|\overrightarrow{DP}||\overrightarrow{DQ}|}$|;
(3)设R是直线上任意一点,则R(x,y),直线的方向向量为$\overrightarrow{m}$=(-B,A),
则可取直线法向量为$\overrightarrow{m}$=(A,B),
$\overrightarrow{{P}_{0}R}$=(x-x0,y-y0
∴d=$\frac{|A(x-{x}_{0})+B(y-{y}_{0})|}{\sqrt{{A}^{2}+{B}^{2}}}$=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$.

点评 本题考查向量知识的运用,考查了点到直线的距离公式、两直线夹角的余弦值的证明方法、类比推理等基础知识与基本技能方法,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设二项式(x-$\frac{a}{x}$)6的展开式中x2项的系数为A,常数项为B,若B=4A,则非零实数a的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.观察下列式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,…,根据以上式子可以猜想:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{201{6}^{2}}$<$\frac{4031}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD中,四边形ABCD是等腰梯形,其中AB∥CD,AB=$\frac{1}{2}$CD=3,且∠BCD=60°;E为CD中点,PA=PB=PC=PD=4.
(1)求证:AD⊥PE.
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设f(x)的定义域为(1,3),则函数f(x2)的定义域是($-\sqrt{3}$,-1)∪(1,$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点O为坐标原点,点P(${\frac{2}{3}$,$\frac{{2\sqrt{6}}}{3}}$)在椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上,且椭圆C的焦距为2.
(1)求椭圆C的方程;
(2)若过定点M(0,-2)的动直线l与椭圆C交于P,Q两点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=(x+1)lnx-4(x-1)在(1,f(1))处的切线方程为2x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别为a,b,c,已知$\frac{cosA-2cosC}{cosB}$=$\frac{2c-a}{b}$.
(1)求$\frac{sinC}{sinA}$的值
(2)若cosB=$\frac{1}{4}$,b=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.判断函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+3(x<0)}\\{0(x=0)}\\{-{x}^{2}+2x-3(x>0)}\end{array}\right.$的奇偶性.

查看答案和解析>>

同步练习册答案