精英家教网 > 高中数学 > 题目详情
15.如图,四棱锥P-ABCD中,四边形ABCD是等腰梯形,其中AB∥CD,AB=$\frac{1}{2}$CD=3,且∠BCD=60°;E为CD中点,PA=PB=PC=PD=4.
(1)求证:AD⊥PE.
(2)求四棱锥P-ABCD的体积.

分析 (1)连接EB,推导出△EBC为等边三角形,从而△PEB≌△PEC,进而PE⊥ABCD,由此能证明AD⊥PE.
(2)求出$PE=\sqrt{7}$,由此能出四棱锥P-ABCD的体积.

解答 证明:(1)连接EB,∵ABCD为等腰梯形,E为CD中点,
∴BE=AD=BC,∴△EBC为等腰三角形,
又∠BCD=60°,故△EBC为等边三角形.
∴BE=BCPD=PC,E为CD的中点,
PE⊥CD,
由BE=BC,PB=PC,PE=PE,
得△PEB≌△PEC,∴PE⊥EB,
BE∩BC=B,
∴PE⊥ABCD,
∵AD?ABCD,∴AD⊥PE.…(6分)
解:(2)∵PC=4,EC=3,∴$PE=\sqrt{7}$,${S_{ABCD}}=\frac{1}{2}(3+6)•\frac{3}{2}\sqrt{3}=\frac{27}{4}\sqrt{3}$,
∴四棱锥P-ABCD的体积${V_{P-ABCD}}=\frac{1}{3}•\sqrt{7}•\frac{27}{4}\sqrt{3}=\frac{9}{4}\sqrt{21}$…(12分)

点评 本题考查线线垂直的证明,考查四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)=sinxcosx-$\frac{\sqrt{3}}{2}$cos2x,则f($\frac{π}{24}$)=(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在长方体ABCD-A1B1C1D1中,E、M、N分别是BC、AE、D1C的中点,AD=AA1,AB=2AD
(Ⅰ)证明:MN∥平面ADD1A1
(Ⅱ)求直线AD与平面DMN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点P(-2,0)与点(1,1).
(1)求椭圆的方程;
(2)过P点作两条互相垂直的直线PA,PB,交椭圆于A,B.
①证明直线AB经过定点;
②求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,在棱长为a的正方体ABCD-A1B1C1D1的面对角线A1B上存在一点P使得AP+D1P取得最小值,若此最小值为$2\sqrt{2+\sqrt{2}}$,则a的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若双曲线C的顶点和焦点分别为椭圆$\frac{x^2}{9}$+$\frac{y^2}{5}$=1的焦点和顶点,则双曲线C的方程为(  )
A.$\frac{x^2}{5}-\frac{y^2}{9}=1$B.$\frac{x^2}{9}-\frac{y^2}{5}=1$C.$\frac{x^2}{5}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{5}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.平面直角坐标系内的向量都可以用一有序实数对唯一表示,这使得我们可以用向量作为解析几何的研究工具,例如,设直线l的倾斜角α(α≠90°),在l上任取两个不同的点P1(x1,y2),P2(x2,y2),不妨设向量$\overrightarrow{{P_1}{P_2}}$的方向是向上的,那么向量$\overrightarrow{{P_1}{P_2}}$的坐标为(x2-x1,y2-y1),过原点作向量$\overrightarrow{OP}$=$\overrightarrow{{P_1}{P_2}}$,则点P的坐标是(x2-x1,y2-y1),而直线OP的倾斜角也是α(α≠90°),根据正切函数的定义得k=tanα=$\frac{{{y_2}-{y_1}}}{{x{\;}_2-{x_1}}}$;利用向量工具研究下列直线Ax+By+C=0,(ABC≠0)有关问题;
(1)、判断向量$\overrightarrow m$=(A,B)与直线Ax+By+C=0的关系,并说明理由;
(2)、直线A1x+B1y+C1=0与直线A2x+B2y+C2=0相交,求两直线夹角的余弦值;
(3)、用向量知识推导点P0(x0,y0)到直线Ax+By+C=0,(ABC≠0)的距离公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=-x2+2|x|.
(Ⅰ)判断并证明函数的奇偶性;
(Ⅱ)写出函数f(x)的单调区间(不需证明);
(Ⅲ)求f(x)在[-3,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.偶函数f(x) 在(0,+∞)上递增,若f(2)=0,则$\frac{{f(x)+f({-x})}}{x}$<0的解集是(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

同步练习册答案