分析 (1)连接EB,推导出△EBC为等边三角形,从而△PEB≌△PEC,进而PE⊥ABCD,由此能证明AD⊥PE.
(2)求出$PE=\sqrt{7}$,由此能出四棱锥P-ABCD的体积.
解答 证明:(1)连接EB,∵ABCD为等腰梯形,E为CD中点,![]()
∴BE=AD=BC,∴△EBC为等腰三角形,
又∠BCD=60°,故△EBC为等边三角形.
∴BE=BCPD=PC,E为CD的中点,
PE⊥CD,
由BE=BC,PB=PC,PE=PE,
得△PEB≌△PEC,∴PE⊥EB,
BE∩BC=B,
∴PE⊥ABCD,
∵AD?ABCD,∴AD⊥PE.…(6分)
解:(2)∵PC=4,EC=3,∴$PE=\sqrt{7}$,${S_{ABCD}}=\frac{1}{2}(3+6)•\frac{3}{2}\sqrt{3}=\frac{27}{4}\sqrt{3}$,
∴四棱锥P-ABCD的体积${V_{P-ABCD}}=\frac{1}{3}•\sqrt{7}•\frac{27}{4}\sqrt{3}=\frac{9}{4}\sqrt{21}$…(12分)
点评 本题考查线线垂直的证明,考查四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{5}-\frac{y^2}{9}=1$ | B. | $\frac{x^2}{9}-\frac{y^2}{5}=1$ | C. | $\frac{x^2}{5}-\frac{y^2}{4}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{5}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,0)∪(2,+∞) | B. | (-∞,-2)∪(0,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com