精英家教网 > 高中数学 > 题目详情
5.偶函数f(x) 在(0,+∞)上递增,若f(2)=0,则$\frac{{f(x)+f({-x})}}{x}$<0的解集是(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)

分析 函数f(x)为偶函数,x•f(x)<0 ①;  f(x)在(-∞,0)上递减,f(-2)=0.

解答 解:∵函数f(x)为偶函数,
$\frac{f(x)+f(-x)}{x}$=$\frac{2f(x)}{x}$<0⇒x•f(x)<0 ①;
∵f(x)在(0,+∞)上递增,f(2)=0;
∴f(x)在(-∞,0)上递减,f(-2)=0;
所以,①式的解为(-∞,-2)∪(0,2);
故选:B

点评 本题主要考查函数的奇偶性与函数单调性,以及函数图形,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD中,四边形ABCD是等腰梯形,其中AB∥CD,AB=$\frac{1}{2}$CD=3,且∠BCD=60°;E为CD中点,PA=PB=PC=PD=4.
(1)求证:AD⊥PE.
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别为a,b,c,已知$\frac{cosA-2cosC}{cosB}$=$\frac{2c-a}{b}$.
(1)求$\frac{sinC}{sinA}$的值
(2)若cosB=$\frac{1}{4}$,b=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>1}\\{2+{4}^{x},x≤1}\end{array}\right.$,则f(f($\frac{1}{2}$))=(  )
A.4B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.△ABC中,若cosA=$\frac{3}{5}$,sinB=$\frac{5}{13}$,则cosC=-$\frac{16}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数定义域的求法:
(1)y=$\frac{f(x)}{g(x)}$,则g(x)≠0;
(2)y=$\root{2n}{f(x)}$(n∈N*),则f(x)≥0;
(3)y=[f(x)]0,则f(x)≠0;
(4)如:y=logf(x)g(x),则f(x)>0且f(x)≠1,g(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.判断函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+3(x<0)}\\{0(x=0)}\\{-{x}^{2}+2x-3(x>0)}\end{array}\right.$的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在圆(x-1)2+(y-3)2=25内过点(1,0)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为(  )
A.40B.20C.80D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等比数列{an}中,a2a10=6a6,等差数列{bn}中,b4+b6=a6,则数列{bn}的前9项和为(  )
A.9B.27C.54D.72

查看答案和解析>>

同步练习册答案