精英家教网 > 高中数学 > 题目详情
10.函数定义域的求法:
(1)y=$\frac{f(x)}{g(x)}$,则g(x)≠0;
(2)y=$\root{2n}{f(x)}$(n∈N*),则f(x)≥0;
(3)y=[f(x)]0,则f(x)≠0;
(4)如:y=logf(x)g(x),则f(x)>0且f(x)≠1,g(x)>0.

分析 直接由函数的性质逐个判断得答案.

解答 解:(1)由分式的分母不等于0,则g(x)≠0;
(2)由根式内部的代数式大于等于0,则f(x)≥0;
(3)由幂函数的性质,则f(x)≠0;
(4)由对数函数的性质,则f(x)≥0且f(x)≠1,g(x)>0.
故答案为:g(x)≠0;f(x)≥0;f(x)≠0;f(x)>0且f(x)≠1,g(x)>0.

点评 本题考查了函数的定义域及其求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若双曲线C的顶点和焦点分别为椭圆$\frac{x^2}{9}$+$\frac{y^2}{5}$=1的焦点和顶点,则双曲线C的方程为(  )
A.$\frac{x^2}{5}-\frac{y^2}{9}=1$B.$\frac{x^2}{9}-\frac{y^2}{5}=1$C.$\frac{x^2}{5}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{5}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={-2,-1,0,1,2,3},集合B={x|y=$\sqrt{4-{x}^{2}}$},则A∩B等于(  )
A.[-2,2]B.{-1,0,1}C.{-2,-1,0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|x-1≤2},B={x|2<x<2m+1,m∈R}≠∅.
(1)若m=3,求(∁RA)∩B;
(2)若A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.偶函数f(x) 在(0,+∞)上递增,若f(2)=0,则$\frac{{f(x)+f({-x})}}{x}$<0的解集是(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若?x∈R,函数f(x)=m(x2-1)+x-a的图象和x轴恒有交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在正三棱柱ABC-A1B1C1中,点D是棱AB的中点,BC=2,AA1=2$\sqrt{3}$.
(1)求证:BC1∥平面A1DC;
(2)求二面角D-A1C-A的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=|x|(2-x),关于x的方程f(x)=m(m∈R)有三个不同的实数解x1,x2,x3,则x1x2x3的取值范围为(1-$\sqrt{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{3}sinxcosx+{cos^2}$x,x∈R.
(1)求$f(\frac{4π}{3})$;
(2)求函数f(x)的最小正周期与单调减区间.

查看答案和解析>>

同步练习册答案