精英家教网 > 高中数学 > 题目详情
1.已知集合A={-2,-1,0,1,2,3},集合B={x|y=$\sqrt{4-{x}^{2}}$},则A∩B等于(  )
A.[-2,2]B.{-1,0,1}C.{-2,-1,0,1,2}D.{0,1,2,3}

分析 根据化简集合B,根据交集的定义写出A∩B.

解答 解:集合A={-2,-1,0,1,2,3},
集合B={x|y=$\sqrt{4-{x}^{2}}$}={x|4-x2≥0}={x|-2≤x≤2},
∴A∩B={-2,-1,0,1,2}.
故选:C.

点评 本题考查了集合的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设f(x)=|x-3|+|x-4|.
(1)求函数$g(x)=\sqrt{2-f(x)}$的定义域;
(2)若存在实数x满足f(x)≤ax-1,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点O为坐标原点,点P(${\frac{2}{3}$,$\frac{{2\sqrt{6}}}{3}}$)在椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上,且椭圆C的焦距为2.
(1)求椭圆C的方程;
(2)若过定点M(0,-2)的动直线l与椭圆C交于P,Q两点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定义在(-1,1)上的函数f(x)是减函数,且f(1-a)<f(a2-1),则实数a的取值范围是0<a<$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别为a,b,c,已知$\frac{cosA-2cosC}{cosB}$=$\frac{2c-a}{b}$.
(1)求$\frac{sinC}{sinA}$的值
(2)若cosB=$\frac{1}{4}$,b=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列an}的前n项和为Sn,若对任意的n∈N*,都有Sn=2n+n2+n-1,则a6=44.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>1}\\{2+{4}^{x},x≤1}\end{array}\right.$,则f(f($\frac{1}{2}$))=(  )
A.4B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数定义域的求法:
(1)y=$\frac{f(x)}{g(x)}$,则g(x)≠0;
(2)y=$\root{2n}{f(x)}$(n∈N*),则f(x)≥0;
(3)y=[f(x)]0,则f(x)≠0;
(4)如:y=logf(x)g(x),则f(x)>0且f(x)≠1,g(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的一个顶点为A(2,0),离心率为$\frac{\sqrt{2}}{2}$.过点G(1,0)的直线l与椭圆C相交于不同的两点M,N,
(1)求椭圆C的方程;
(2)当△AMN的面积为$\frac{{\sqrt{10}}}{3}$时,求直线l的方程.

查看答案和解析>>

同步练习册答案