精英家教网 > 高中数学 > 题目详情
11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的一个顶点为A(2,0),离心率为$\frac{\sqrt{2}}{2}$.过点G(1,0)的直线l与椭圆C相交于不同的两点M,N,
(1)求椭圆C的方程;
(2)当△AMN的面积为$\frac{{\sqrt{10}}}{3}$时,求直线l的方程.

分析 (1)由题意可知:椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)焦点在x轴上,一个顶点为A(2,0),即a=2,椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{2}}{2}$,解得:b2=2,即可求得椭圆方程;
(2)设直线l的方程为:my=x-1,代入椭圆方程,由韦达定理可知:y1+y2=-$\frac{2m}{{m}^{2}+2}$,y1y2=-$\frac{3}{{m}^{2}+2}$,由弦长公式可知:∴|MN|=$\sqrt{1+{m}^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{1+{m}^{2}}$•$\frac{2\sqrt{4{m}^{2}+6}}{{m}^{2}+2}$.点A到直线l的距离d=$\frac{1}{\sqrt{1+{m}^{2}}}$,根据三角形的面积公式可知:S=$\frac{1}{2}$|•BC|•d=$\frac{\sqrt{4{m}^{2}+6}}{{m}^{2}+2}$=$\frac{{\sqrt{10}}}{3}$,即可求得m的值,求得直线l的方程.

解答 解:(1)由题意可知:椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)焦点在x轴上,
由一个顶点为A(2,0),即a=2,
椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{2}}{2}$,解得:b2=2,
∴椭圆的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$:
(2)设直线l的方程为:my=x-1,M(x1,y1),N(x2,y2).
联立$\left\{\begin{array}{l}{my=x-1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,化为(m2+2)y2+2my-3=0,
△=4m2+12(m2+2)=16m2+24>0
∴y1+y2=-$\frac{2m}{{m}^{2}+2}$,y1y2=-$\frac{3}{{m}^{2}+2}$.
∴|MN|=$\sqrt{1+{m}^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$
=$\sqrt{1+{m}^{2}}$•$\sqrt{(-\frac{2m}{{m}^{2}+2})^{2}-4×(-\frac{3}{{m}^{2}+2})}$=$\sqrt{1+{m}^{2}}$•$\frac{2\sqrt{4{m}^{2}+6}}{{m}^{2}+2}$.
点A到直线l的距离d=$\frac{1}{\sqrt{1+{m}^{2}}}$,
∴△AMN的面积S=$\frac{1}{2}$|•BC|•d=$\frac{\sqrt{4{m}^{2}+6}}{{m}^{2}+2}$=$\frac{{\sqrt{10}}}{3}$,
化为5m4+2m2-7=0,
解得m2=1,
∴m=±1.
直线l的方程x±y-1=0.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、一元二次的方程的根与系数的关系、点到直线的距离公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知集合A={-2,-1,0,1,2,3},集合B={x|y=$\sqrt{4-{x}^{2}}$},则A∩B等于(  )
A.[-2,2]B.{-1,0,1}C.{-2,-1,0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在正三棱柱ABC-A1B1C1中,点D是棱AB的中点,BC=2,AA1=2$\sqrt{3}$.
(1)求证:BC1∥平面A1DC;
(2)求二面角D-A1C-A的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=|x|(2-x),关于x的方程f(x)=m(m∈R)有三个不同的实数解x1,x2,x3,则x1x2x3的取值范围为(1-$\sqrt{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,既是奇函数,又在区间(0,+∞)上为增函数的是(  )
A.f(x)=x2-xB.f(x)=$\frac{1}{x}$+xC.f(x)=2x+$\frac{1}{{2}^{x}}$D.f(x)=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设全集U=R,集合A={x|2≤x<4,x∈R},B={x|3x-7≥8-2x,x∈R},求A∪B,(∁UA)∪(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知全集U=R,集合A={x|2x+a>0},B={x|x>3或x<-1}.
(1)当a=2时,求集合A∩B;
(2)若(∁UA)∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{3}sinxcosx+{cos^2}$x,x∈R.
(1)求$f(\frac{4π}{3})$;
(2)求函数f(x)的最小正周期与单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果一个点时一个指数函数和一个对数函数的图象的交点,那么称这个点为“好点”,下列四个点P1(1,1),P2(1,2),P3($\frac{1}{2}$,$\frac{1}{2}$),P4(2,2)中,“好点”的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案