精英家教网 > 高中数学 > 题目详情
3.已知全集U=R,集合A={x|2x+a>0},B={x|x>3或x<-1}.
(1)当a=2时,求集合A∩B;
(2)若(∁UA)∪B=R,求实数a的取值范围.

分析 (1)求出a=2时集合A,再根据交集的定义写出A∩B;
(2)化简集合A,根据补集和并集的定义即可得出a的取值范围.

解答 解:(1)由2x+a>0,得$x>-\frac{a}{2}$,
即$A=\left\{{x|x>-\frac{a}{2}}\right\}$;
当a=2时,A={x|x>-1},
所以A∩B={x|x>3};
(2)由(1)知$A=\left\{{x|x>-\frac{a}{2}}\right\}$,
所以∁UA={x|x≤-$\frac{a}{2}$},
又(∁UA)∪B=R,
所以$-\frac{a}{2}≥3$,
解得a≤-6.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>1}\\{2+{4}^{x},x≤1}\end{array}\right.$,则f(f($\frac{1}{2}$))=(  )
A.4B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在圆(x-1)2+(y-3)2=25内过点(1,0)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为(  )
A.40B.20C.80D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的一个顶点为A(2,0),离心率为$\frac{\sqrt{2}}{2}$.过点G(1,0)的直线l与椭圆C相交于不同的两点M,N,
(1)求椭圆C的方程;
(2)当△AMN的面积为$\frac{{\sqrt{10}}}{3}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}的各项均为正数,${a_1}=2,{a_{n+1}}-{a_n}=\frac{4}{{{a_{n+1}}+{a_n}}}$,若数列$\left\{{\frac{1}{{{a_{n-1}}+{a_n}}}}\right\}$的前n项和为5,则n=120.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式组$\left\{\begin{array}{l}{0≤2x+y≤6}\\{0≤x-y≤3}\end{array}\right.$表示的平面区域的面积为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等比数列{an}中,a2a10=6a6,等差数列{bn}中,b4+b6=a6,则数列{bn}的前9项和为(  )
A.9B.27C.54D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设F1、F2是椭圆$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{2}$=1的两个焦点,点P在椭圆上,当△F1PF2的面积为2时,$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=(  )
A.-$\frac{2\sqrt{6}}{3}$B.0C.1D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若曲线C1:y=ax2(a>0)与曲线C2:y=e-x有公共切线,则a的取值范围为(  )
A.[$\frac{{e}^{2}}{4}$,+∞)B.[$\frac{{e}^{2}}{8}$,+∞)C.(0,$\frac{{e}^{2}}{4}$]D.(0,$\frac{{e}^{2}}{8}$]

查看答案和解析>>

同步练习册答案