精英家教网 > 高中数学 > 题目详情
14.在圆(x-1)2+(y-3)2=25内过点(1,0)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为(  )
A.40B.20C.80D.10

分析 由圆的方程找出圆心坐标和半径r,连接圆心与点(1,0),利用垂径定理的逆定理最长的弦为过(1,0)的直径,最短的弦为与直径垂直的弦,由圆心与(1,0)的距离d,即弦心距及圆的半径r,勾股定理及垂径定理求出最短的弦长,再由直径与最短的弦长垂直,利用直径与最短弦长乘积的一半即可求出四边形ABCD的面积.

解答 解:由圆的方程(x-1)2+(y-3)2=25,得到圆心坐标为(1,3),半径r=5,
∵过(1,0)最长的弦为直径,即AC=10,且(1,0)与(1,3)的距离d=3,
∴最短的弦长BD=2$\sqrt{25-9}$=8,
又AC⊥BD,
则四边形ABCD的面积S=$\frac{1}{2}$×10×8=40.
故选A.

点评 此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,两点间的距离公式,垂径定理,勾股定理,以及对角线垂直的四边形面积求法,其中根据题意得出最长的弦长与最短的弦长是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=-x2+2|x|.
(Ⅰ)判断并证明函数的奇偶性;
(Ⅱ)写出函数f(x)的单调区间(不需证明);
(Ⅲ)求f(x)在[-3,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.偶函数f(x) 在(0,+∞)上递增,若f(2)=0,则$\frac{{f(x)+f({-x})}}{x}$<0的解集是(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在正三棱柱ABC-A1B1C1中,点D是棱AB的中点,BC=2,AA1=2$\sqrt{3}$.
(1)求证:BC1∥平面A1DC;
(2)求二面角D-A1C-A的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2x+$\frac{a}{2^x}$是偶函数.
(1)求不等式f(x)<$\frac{5}{2}$的解集;
(2)对任意x∈R,不等式f(2x)≥mf(x)-18恒成立,求实数m的最大值及此时x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=|x|(2-x),关于x的方程f(x)=m(m∈R)有三个不同的实数解x1,x2,x3,则x1x2x3的取值范围为(1-$\sqrt{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,既是奇函数,又在区间(0,+∞)上为增函数的是(  )
A.f(x)=x2-xB.f(x)=$\frac{1}{x}$+xC.f(x)=2x+$\frac{1}{{2}^{x}}$D.f(x)=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知全集U=R,集合A={x|2x+a>0},B={x|x>3或x<-1}.
(1)当a=2时,求集合A∩B;
(2)若(∁UA)∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设实数x,y满足约束条件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y-2≤0}\\{x≥-2}\end{array}\right.$,则x2+(y+4)2的取值范围是(  )
A.[2,68]B.[4,68]C.[2,2$\sqrt{17}$]D.[$\sqrt{2}$,2$\sqrt{17}$]

查看答案和解析>>

同步练习册答案