精英家教网 > 高中数学 > 题目详情
4.设实数x,y满足约束条件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y-2≤0}\\{x≥-2}\end{array}\right.$,则x2+(y+4)2的取值范围是(  )
A.[2,68]B.[4,68]C.[2,2$\sqrt{17}$]D.[$\sqrt{2}$,2$\sqrt{17}$]

分析 由题意作平面区域,而x2+(y+4)2的几何意义是点A(0,-4)与阴影内的点的距离的平方,从而结合图象解得.

解答 解:由题意作$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y-2≤0}\\{x≥-2}\end{array}\right.$平面区域如下,
x2+(y+4)2的几何意义是点A(0,-4)与阴影内的点的距离的平方,
而点A到直线x-y-2=0的距离d=$\frac{|2-4|}{\sqrt{2}}$=$\sqrt{2}$,由$\left\{\begin{array}{l}{x=-2}\\{x+y-2=0}\end{array}\right.$
B(-2,4),故|AB|=$\sqrt{({-2)}^{2}+(4+4)^{2}}$=$\sqrt{68}$,
故($\sqrt{2}$)2≤x2+(y+2)2≤($\sqrt{68}$)2
即2≤x2+(y+2)2≤68,
故选:A.

点评 本题考查了线性规划的变形应用及数形结合的思想应用,同时考查了转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在圆(x-1)2+(y-3)2=25内过点(1,0)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为(  )
A.40B.20C.80D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等比数列{an}中,a2a10=6a6,等差数列{bn}中,b4+b6=a6,则数列{bn}的前9项和为(  )
A.9B.27C.54D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设F1、F2是椭圆$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{2}$=1的两个焦点,点P在椭圆上,当△F1PF2的面积为2时,$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=(  )
A.-$\frac{2\sqrt{6}}{3}$B.0C.1D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知角α的终边经过点P(-1,2),则tanα的值是(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}是一个等差数列,且a2=1,a5=-5.
(1)求{an}的通项an
(2)求{an}前n项和Sn的最大值;
(3)设bn=$\frac{1}{(4-{a}_{n})(4-{a}_{n+1})}$,数列{bn}的前n项的和记为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知F1,F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)左右焦点,它的离心率e=$\frac{{\sqrt{3}}}{2}$,且被直线y=$\frac{1}{2}({x+a})$所截得的线段的中点的横坐标为-1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(m,n)是其椭圆上的任意一点,当∠F1PF2为钝角时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若曲线C1:y=ax2(a>0)与曲线C2:y=e-x有公共切线,则a的取值范围为(  )
A.[$\frac{{e}^{2}}{4}$,+∞)B.[$\frac{{e}^{2}}{8}$,+∞)C.(0,$\frac{{e}^{2}}{4}$]D.(0,$\frac{{e}^{2}}{8}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知随机变量X的概率分布如下:
X1234
P0.10.40.20.3
则V(X)=1.01.

查看答案和解析>>

同步练习册答案