精英家教网 > 高中数学 > 题目详情
9.已知数列{an}是一个等差数列,且a2=1,a5=-5.
(1)求{an}的通项an
(2)求{an}前n项和Sn的最大值;
(3)设bn=$\frac{1}{(4-{a}_{n})(4-{a}_{n+1})}$,数列{bn}的前n项的和记为Tn,求Tn

分析 (1)设数列{an}的公差为d,由题意和等差数列的通项公式列出方程组,求出a1和d,代入等差数列的通项公式求出an
(2)由(1)和等差数列的前n项和公式求出Sn,利用配方法化简后,由二次函数的性质求出Sn的最大值;
(3)由(1)化简bn,利用裂项相消法求出前n项的和Tn

解答 解:(1)设数列{an}的公差为d,…(1分)
由已知条件得,$\left\{\begin{array}{l}{{a}_{1}+d=1}\\{{a}_{1}+4d=-5}\end{array}\right.$,…(2分)
解得$\left\{\begin{array}{l}{{a}_{1}=3}\\{d=-2}\end{array}\right.$  …(3分)
所以an=3+(n-1)•(-2)=-2n+5;…(4分)
(2)由(1)得,Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$=$\frac{n(3-2n+5)}{2}$
=-n2+4n=-(n-2)2+4.…(6分)
所以当n=2时,Sn取到最大值是4;  …(8分)
(3)由(1)得,bn=$\frac{1}{(4-{a}_{n})(4-{a}_{n+1})}$=$\frac{1}{(2n-1)(2n+1)}$
=$\frac{1}{2}$($\frac{1}{2n-1}-\frac{1}{2n+1}$),…(10分)
所以Tn=b1+b2+…+bn-1+bn
=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-3}-\frac{1}{2n-1})+(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})=\frac{n}{2n+1}$----(12分)

点评 本题考查等差数列的通项公式,等差数列的前n项和公式以及最值问题,以及裂项相消法求数列的和,考查方程思想,化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=|x|(2-x),关于x的方程f(x)=m(m∈R)有三个不同的实数解x1,x2,x3,则x1x2x3的取值范围为(1-$\sqrt{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{3}sinxcosx+{cos^2}$x,x∈R.
(1)求$f(\frac{4π}{3})$;
(2)求函数f(x)的最小正周期与单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆的左、右焦点分别为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),且过点(1,-$\frac{\sqrt{3}}{2}$).
(1)、求椭圆的方程;
(2)、过椭圆的右焦点作斜率为$\sqrt{3}$直线l交椭圆于M,N两点,求弦MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设实数x,y满足约束条件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y-2≤0}\\{x≥-2}\end{array}\right.$,则x2+(y+4)2的取值范围是(  )
A.[2,68]B.[4,68]C.[2,2$\sqrt{17}$]D.[$\sqrt{2}$,2$\sqrt{17}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线C:y2=4x的焦点为F,直线L:x=ty+1与C交于P(x1,y1),Q(x1,y2)两点,若$\overrightarrow{PF}$=λ$\overrightarrow{FQ}$.
(1)若λ=1,求|PQ|的长;
(2)若λ∈[$\frac{1}{2}$,2],求|PQ|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果一个点时一个指数函数和一个对数函数的图象的交点,那么称这个点为“好点”,下列四个点P1(1,1),P2(1,2),P3($\frac{1}{2}$,$\frac{1}{2}$),P4(2,2)中,“好点”的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数y=f(x)的定义域为R,f(x)在x=m时取得最值,又知y=g(x)为一次函数,且f(x)+g(x)=x2+x-2.
(1)求f(x)的解析式,用m表示;
(2)当x∈[-2,1]时,f(x)≥-3恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图:四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=$\frac{π}{3}$,M是BC上的点,且BM=$\frac{1}{2}$,
(1)证明:BC⊥平面POM;
(2)若边PC与底面ABCD所成角的正切值为1,求平面PAD与平面PBC所成的二面角的余弦值.

查看答案和解析>>

同步练习册答案