精英家教网 > 高中数学 > 题目详情
19.已知角α的终边经过点P(-1,2),则tanα的值是(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 根据题意任意角三角函数的定义即可求出.

解答 解:由α的终边经过点P(-1,2),
可知tanα=$\frac{y}{x}$=-2,
故选B:.

点评 本题考查任意角三角函数的定义,掌握任意角三角函数的定义是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2x+$\frac{a}{2^x}$是偶函数.
(1)求不等式f(x)<$\frac{5}{2}$的解集;
(2)对任意x∈R,不等式f(2x)≥mf(x)-18恒成立,求实数m的最大值及此时x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.斜率为2的直线经过(3,5),(a,7)二点,则a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.三个数0.76,60.7,log0.7 6的大小关系为(  )
A.log0.7 6<0.7 6<6 0.7B.0.7 6<6 0.7<log0.7 6
C.log0.7 6<6 0.7<0.76D.0.7 6<log0.7 6<6 0.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{2\sqrt{3}}{3}$,其右焦点到直线x=$\frac{{a}^{2}}{c}$的距离为$\frac{1}{2}$,则此双曲线的方程为$\frac{{x}^{2}}{3}-{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设实数x,y满足约束条件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y-2≤0}\\{x≥-2}\end{array}\right.$,则x2+(y+4)2的取值范围是(  )
A.[2,68]B.[4,68]C.[2,2$\sqrt{17}$]D.[$\sqrt{2}$,2$\sqrt{17}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C的圆心在坐标原点,且过点M($\sqrt{3}$,1).
(Ⅰ)求圆C的方程;
(Ⅱ)已知点P是圆C上的动点,试求点P到直线$\sqrt{3}$x+y-6=0的距离的最小值;
(Ⅲ)若直线L与圆C相切,且L与x,y轴的正半轴分别相交于A,B两点,求△ABC的面积最小时直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=sin(ωx+$\frac{π}{6}$)(ω>0)的图象与x轴的交点横坐标构成一个公差为$\frac{π}{2}$的等差数列,要得到g(x)=cos(ωx+$\frac{π}{6}$)的图象,可将f(x)的图象(  )
A.向右平移$\frac{π}{4}$个单位B.向左平移$\frac{π}{4}$个单位
C.向左平移$\frac{π}{2}$个单位D.向右平移$\frac{π}{2}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)求证:PB∥平面EAC;
(3)求三棱锥E-ACD的体积.

查看答案和解析>>

同步练习册答案