精英家教网 > 高中数学 > 题目详情
11.设f(x)=|x-3|+|x-4|.
(1)求函数$g(x)=\sqrt{2-f(x)}$的定义域;
(2)若存在实数x满足f(x)≤ax-1,试求实数a的取值范围.

分析 (1)求出f(x)=|x-3|+|x-4|与直线y=2交点的横坐标为$\frac{5}{2}$和$\frac{9}{2}$,由此能求出不等式$g(x)=\sqrt{2-f(x)}$的定义域.
(2)函数y=ax-1的图象是过点(0,-1)的直线,作出图象,结合图象能求出实数a的取值范围.

解答 解:(1)∵$f(x)=|x-3|+|x-4|=\left\{{\begin{array}{l}{7-2x\;,\;\;x<3}\\{1\;,\;\;3\;≤\;x\;≤\;4}\\{2x-7\;,\;\;x>4}\end{array}}\right.$,
它与直线y=2交点的横坐标为$\frac{5}{2}$和$\frac{9}{2}$.
∴不等式$g(x)=\sqrt{2-f(x)}$的定义域为$[\frac{5}{2}\;,\;\;\frac{9}{2}]$.(5分)
(2)函数y=ax-1的图象是过点(0,-1)的直线,
作出图象,如下图:

结合图象可知,a取值范围为$(-∞\;,\;\;-2)∪[\frac{1}{2}\;,\;\;+∞)$.(10分)

点评 本题考查函数的定义域的求法,考查实数的取值范围的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数f(x)满足:f(x)>1-f′(x),f(0)=4,则不等式$\frac{{{e^x}f(x)}}{{{e^x}+3}}$>1(其中e为自然对数的底数)的解集为(  )
A.(3,+∞)B.(-∞,0)∪(3,+∞)C.(0,+∞)D.(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一只蚂蚁在一直角边长为1m的等腰直角三角形ABC(∠B=90°)内随机爬行,则蚂蚁距A点不超过1m的概率为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的周期为π,且图象上有一个最低
点为M($\frac{2π}{3}$,-3).
(1)求f(x)的解析式;
(2)求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在长方体ABCD-A1B1C1D1中,E、M、N分别是BC、AE、D1C的中点,AD=AA1,AB=2AD
(Ⅰ)证明:MN∥平面ADD1A1
(Ⅱ)求直线AD与平面DMN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(-1,4]时,f(x)=x2-2x,则函数f(x)在区间[0,2016]上的零点个数是605.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点P(-2,0)与点(1,1).
(1)求椭圆的方程;
(2)过P点作两条互相垂直的直线PA,PB,交椭圆于A,B.
①证明直线AB经过定点;
②求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若双曲线C的顶点和焦点分别为椭圆$\frac{x^2}{9}$+$\frac{y^2}{5}$=1的焦点和顶点,则双曲线C的方程为(  )
A.$\frac{x^2}{5}-\frac{y^2}{9}=1$B.$\frac{x^2}{9}-\frac{y^2}{5}=1$C.$\frac{x^2}{5}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{5}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={-2,-1,0,1,2,3},集合B={x|y=$\sqrt{4-{x}^{2}}$},则A∩B等于(  )
A.[-2,2]B.{-1,0,1}C.{-2,-1,0,1,2}D.{0,1,2,3}

查看答案和解析>>

同步练习册答案