分析 (1)由题意知:A=3,ω=2,由3sin(2×$\frac{2π}{3}$+φ)=-3,得φ+$\frac{4π}{3}$=-$\frac{π}{2}$+2kπ,k∈Z,而0<φ<$\frac{π}{2}$,所以确定φ的值,故f(x)=3sin(2x+$\frac{π}{6}$);
(2)根据正弦函数的单调性得到2kπ-$\frac{2π}{3}$≤2x≤2kπ+$\frac{π}{2}$,解出即可.
解答 解:(1)由题意知:A=3,ω=2,
由3sin(2×$\frac{2π}{3}$+φ)=-3,
得φ+$\frac{4π}{3}$=-$\frac{π}{2}$+2kπ,k∈Z,
即φ=$\frac{-11π}{6}$+2kπ,k∈Z,
而0<φ<$\frac{π}{2}$,所以k=1,φ=$\frac{π}{6}$,
故f(x)=3sin(2x+$\frac{π}{6}$).
(2)由题意得:2kπ-$\frac{2π}{3}$≤2x≤2kπ+$\frac{π}{2}$,
即2kπ-$\frac{2π}{3}$≤2x≤2kπ+$\frac{π}{3}$,
∴kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,
故函数的递增区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
点评 本题主要考察了正弦函数的图象和性质,由y=Asin(ωx+φ)的部分图象确定其解析式,属于基本知识的考查.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | e2 | D. | 2e2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=log2x | B. | f(x)=x|x| | C. | f(x)=x2+1 | D. | f(x)=2x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com