精英家教网 > 高中数学 > 题目详情
9.已知函数g(x)=a-x2($\frac{1}{e}$≤x≤e,e为自然对数的底数),若函数y=g(x)的图象与函数h(x)=2lnx-2的图象存在关于x轴对称的点,则实数a的最大值为(  )
A.1B.2C.e2D.2e2

分析 若函数g(x)=a-x2($\frac{1}{e}$≤x≤e,e为自然对数的底数),若函数y=g(x)的图象与函数h(x)=2lnx-2的图象存在关于x轴对称的点,则函数y=x2-a($\frac{1}{e}$≤x≤e,e为自然对数的底数)与函数h(x)=2lnx-2的图象有交点,即x2-a=2lnx-2,($\frac{1}{e}$≤x≤e)有解,利用导数法,可得a的最大值.

解答 解:若函数g(x)=a-x2($\frac{1}{e}$≤x≤e,e为自然对数的底数),
若函数y=g(x)的图象与函数h(x)=2lnx-2的图象存在关于x轴对称的点,
则函数y=x2-a($\frac{1}{e}$≤x≤e,e为自然对数的底数)与函数h(x)=2lnx-2的图象有交点,
即x2-a=2lnx-2,($\frac{1}{e}$≤x≤e)有解,
即a=x2-2lnx+2,($\frac{1}{e}$≤x≤e)有解,
令y=x2-2lnx+2,($\frac{1}{e}$≤x≤e),
则y′=2x-$\frac{2}{x}$,
当$\frac{1}{e}$≤x<1时,y′<0,函数为减函数,
当1<x≤e时,y′>0,函数为增函数,
故x=1时,函数取最小值3,
当x=e时,函数取最大值e2
故实数a的最大值为e2
故选:C

点评 本题考查的知识点是函数图象的交点与方程根的关系,利用导数求函数的最值,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若x、y满足约束条件$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-4≤0\end{array}\right.$,则$\frac{y-1}{x}$的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设向量$\overrightarrow{a}$=(m,1),$\overrightarrow{b}$=(2,-3),若满足$\overrightarrow{a}⊥\overrightarrow{b}$,则m=(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.①设数列{an}的前n项和为Sn,由an=2n-1,求出S${\;}_{1}={1}^{2}$,S${\;}_{2}={2}^{2}$,S${\;}_{3}={3}^{2}$,…,推断:S${\;}_{n}={n}^{2}$;②由圆x2+y2=r2的面积S=πr2,推断:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的面积S=πab.则①②两个推理依次是(  )
A.归纳推理,类比推理B.演绎推理,类比推理
C.类比推理,演绎推理D.归纳推理,演绎推理

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)=Asin(ωx-$\frac{π}{3}$)+2(A>0,ω>0)的最大值为4,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)设α∈(0,π),则f($\frac{α}{2}$)=3,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知极坐标系与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴,直线l的参数方程为$\left\{\begin{array}{l}{x=4+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),圆C的极坐标方程为ρ=4cosθ,直线l与圆C交于M,N两点.
(Ⅰ)求圆C和直线l的普通方程;
(Ⅱ)求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数f(x)满足:f(x)>1-f′(x),f(0)=4,则不等式$\frac{{{e^x}f(x)}}{{{e^x}+3}}$>1(其中e为自然对数的底数)的解集为(  )
A.(3,+∞)B.(-∞,0)∪(3,+∞)C.(0,+∞)D.(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.4位同学各自在周五、周六、周日三天中任选一天参加公益活动,则三天都有同学参加公益活动的概率为(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{4}{9}$D.$\frac{26}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的周期为π,且图象上有一个最低
点为M($\frac{2π}{3}$,-3).
(1)求f(x)的解析式;
(2)求函数f(x)的单调增区间.

查看答案和解析>>

同步练习册答案