分析 由f(x)+f(x+5)=16,可得f(x+5)+f(x+10)=16,两式相减,可得f(x)为周期为10的函数,作图分析可知,当x∈(-1,9)时,f(x)=x2-2x有三个零点,从而可得答案,
解答 解:∵f(x)+f(x+5)=16,
f(x+5)+f(x+10)=16,
两式相减得,f(x)=f(x+10),
故f(x)为周期为10的函数,x∈(-1,9)时,
令f(x)=x2-2x=0得:x2=2x,
在同一坐标系中作出y=x2与y=2x的图象如下,![]()
由图知,当x∈(-1,4]时,函数f(x)=x2-2x有3个零点(y轴右侧的两个零点为2和4),
∵f’(x)=2x-2xln2,∴当x∈(4,9)时,f’(x)<0,函数单调减,即无零点,
综上:函数f(x)在一个周期内有三个零点,2016=10×201+6,
就是说在区间在[0,2016]上有201个完整周期,这201个周期内共603个零点,在[0,6]内有二个零点,
∴函数f(x)在[0,2016]上共有605个零点,
故答案为:605.
点评 本题考查抽象函数及其应用,求得函数的周期为10,且一个周期内函数f(x)有三个零点是关键,也是难点,考查分析与作图能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | $({0,\;\frac{1}{2}}]$ | B. | $({0,\;\frac{1}{3}}]$ | C. | $({0,\;\frac{1}{4}}]$ | D. | $[{\frac{1}{4},\;\;\frac{1}{3}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=log2x | B. | f(x)=x|x| | C. | f(x)=x2+1 | D. | f(x)=2x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com