精英家教网 > 高中数学 > 题目详情
8.在平面直角坐标系中,已知第一象限内的点P(a,b)在直线x+2y-2=0上,则$\frac{4}{a+b}$+$\frac{1}{b}$的最小值是$\frac{9}{2}$.

分析 第一象限内的点P(a,b)在直线x+2y-2=0上,可得a+2b-2=0,即(a+b)+b=2,a,b>0.则$\frac{4}{a+b}$+$\frac{1}{b}$=$\frac{1}{2}$[(a+b)+b]$(\frac{4}{a+b}+\frac{1}{b})$=$\frac{1}{2}(5+\frac{4b}{a+b}+\frac{a+b}{b})$,再利用基本不等式的性质即可得出.

解答 解:∵第一象限内的点P(a,b)在直线x+2y-2=0上,
∴a+2b-2=0,即(a+b)+b=2,a,b>0.
则$\frac{4}{a+b}$+$\frac{1}{b}$=$\frac{1}{2}$[(a+b)+b]$(\frac{4}{a+b}+\frac{1}{b})$=$\frac{1}{2}(5+\frac{4b}{a+b}+\frac{a+b}{b})$≥$\frac{1}{2}(5+2\sqrt{\frac{4b}{a+b}•\frac{a+b}{b}})$=$\frac{9}{2}$,当且仅当a=b=$\frac{2}{3}$时取等号.
∴$\frac{4}{a+b}$+$\frac{1}{b}$的最小值是$\frac{9}{2}$.
故答案为:$\frac{9}{2}$.

点评 本题考查了点与直线方程的关系、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.观察下列式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,…,根据以上式子可以猜想:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{201{6}^{2}}$<$\frac{4031}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=(x+1)lnx-4(x-1)在(1,f(1))处的切线方程为2x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别为a,b,c,已知$\frac{cosA-2cosC}{cosB}$=$\frac{2c-a}{b}$.
(1)求$\frac{sinC}{sinA}$的值
(2)若cosB=$\frac{1}{4}$,b=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的两条渐近线与抛物线y2=4x分别相交于异于原点O的两点A,B,F为抛物线y2=4x的焦点,已知∠AFB=$\frac{2π}{3}$,则该双曲线的离心率为$\sqrt{13}$或$\frac{\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>1}\\{2+{4}^{x},x≤1}\end{array}\right.$,则f(f($\frac{1}{2}$))=(  )
A.4B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.△ABC中,若cosA=$\frac{3}{5}$,sinB=$\frac{5}{13}$,则cosC=-$\frac{16}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.判断函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+3(x<0)}\\{0(x=0)}\\{-{x}^{2}+2x-3(x>0)}\end{array}\right.$的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}的各项均为正数,${a_1}=2,{a_{n+1}}-{a_n}=\frac{4}{{{a_{n+1}}+{a_n}}}$,若数列$\left\{{\frac{1}{{{a_{n-1}}+{a_n}}}}\right\}$的前n项和为5,则n=120.

查看答案和解析>>

同步练习册答案