精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长为4,若点P是椭圆C上任意一点,过原点的直线l与椭圆相交于M、N两点,记直线PM、PN的斜率分别为KPM、KPN,当KPMKPN=-
1
4
时,则椭圆方程为(  )
分析:由长轴长易求a值,设P(x0,y0),直线l方程为y=kx,M(x1,kx1),N(-x1,-kx1),由KPMKPN=-
1
4
可得一等式,再由P在椭圆上可得一等式,由两式可消去y0,由P为椭圆任意点可知该式与x0无关,由此可求得b值.
解答:解:由长轴长为4得2a=4,解得a=2,
设P(x0,y0),直线l方程为y=kx,M(x1,kx1),N(-x1,-kx1),
则KPM=
y0-kx1
x0-x1
,KPN=
y0+kx1
x0+x1

KPMKPN=-
1
4
得,
y0-kx1
x0-x1
y0+kx1
x0+x1
=-
1
4
,即
y02-k2x12
x02-x12
=-
1
4

所以4y02=(4k2+1)x12-x02①,
又P在椭圆上,所以
x02
4
+
y02
b2
=1
,即4y02=4b2-b2x02,代入①式得4b2-b2x02=(4k2+1)x12-x02
所以4b2=(4k2+1)x12+(b2-1)x02
因为点P为椭圆上任意一点,所以该式恒成立与x0无关,
所以b2-1=0,解得b=1,
所以所求椭圆方程为
x2
4
+y2=1

故选D.
点评:本题考查直线与圆锥曲线的位置关系,考查恒成立问题,解决本题的关键是正确理解“点P的任意性”,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案