(本小题共13分)
如图所示,正方形
与矩形
所在平面互相垂直,
,点E为
的中点。
![]()
(Ⅰ)求证:
(Ⅱ) 求证:![]()
(Ⅲ)在线段AB上是否存在点
,使二面角
的大小为
?若存在,求出
的长;若不存在,请说明理由。
(1)根据三角形的中位线,那么可以
//
,然后结合线面平行的判定定理可知结论。
(2)结合已知中正方形的心智,以及
,结合线面垂直的性质定理得到线线垂直。
(3)![]()
【解析】
试题分析:(Ⅰ)
,
点E为
的中点,连接
。
![]()
的中位线
//
……2分
又![]()
![]()
……4分
(II)
正方形
中,
由已知可得:
,
…….6分
,
…….7分
![]()
…….8分
(Ⅲ)由题意可得:
,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则
,
9分
设![]()
10分
设平面
的法向量为![]()
则
得
11分
取
是平面
的一个法向量,而平面
的一个法向量为
12分
要使二面角
的大小为
而
解得:![]()
当
=
时,二面角
的大小为
13分
考点:空间中的线面平行和线线垂直以及二面角的求解
点评:解决平行和垂直的证明,一般要用到判定定理和性质定理,然后结合空间向量法来求解二面角,属于基础题。
科目:高中数学 来源: 题型:
(本小题共13分)
已知函数![]()
(I)若x=1为
的极值点,求a的值;
(II)若
的图象在点(1,
)处的切线方程为
,
(i)求
在区间[-2,4]上的最大值;
(ii)求函数
的单调区间.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年北京市高三压轴文科数学试卷(解析版) 题型:解答题
(本小题共13分)
已知向量
,设函数
.
(Ⅰ)求函数
在
上的单调递增区间;
(Ⅱ)在
中,
,
,
分别是角
,
,
的对边,
为锐角,若
,
,
的面积为
,求边
的长.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题
(本小题共13分)
某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.
(Ⅰ)求分别获得一、二、三等奖的概率;
(Ⅱ)设摸球次数为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源:北京市宣武区2010年高三第一次质量检测数学(文)试题 题型:解答题
(本小题共13分)
已知函数![]()
(I)当a=1时,求函数
的最小正周期及图象的对称轴方程式;
(II)当a=2时,在
的条件下,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com