精英家教网 > 高中数学 > 题目详情

【题目】已知命题

(1)若为假命题,求实数的取值范围;

(2))若为真命题,为假命题,求实数的取值范围.

【答案】(1);(2)

【解析】

(1)本题首先可以确定当命题是真命题时实数的取值范围,然后根据为假命题得出命题是真命题,即可得出结果;

(2)本题首先可以根据题意得出两种情况,分别为假、真,然后结合(1)中结论进行分类讨论即可得出结果。

(1),即当恒成立,即

因为命题为假命题,所以命题是真命题,

此时,故实数的取值范围为

(2)因为为真命题,为假命题,

所以命题与命题中一个是真命题,一个是假命题,

假时,命题是真命题,

因为命题,所以命题

因为命题,所以此时

真时,命题为真命题,即

因为命题,所以此时

综上所述,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的菱形,且平面,点是线段上任意一点.

(1)证明:平面平面

(2)若的最大值是,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高万元,已知建筑第5层楼房时,每平方米建筑费用为万元.

若学生宿舍建筑为x层楼时,该楼房综合费用为y万元,综合费用是建筑费用与购地费用之和,写出的表达式;

为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知是椭圆的右焦点,直线与椭圆相切于点

1)若,求

2)若,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的图像关于直线对称.

1)求的值;

2)判断并证明函数在区间上的单调性;

3)若直线的图像无公共点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知pr的充分条件而不是必要条件,qr的充分条件,sr的必要条件,qs的必要条件。现有下列命题:①sq的充要条件;②pq的充分条件而不是必要条件;③rq的必要条件而不是充分条件;④的必要条件而不是充分条件;⑤rs的充分条件而不是必要条件.则正确命题序号是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学高等数学这学期分别用两种不同的数学方式试验甲、乙两个大一新班(人数均为人,入学数学平均分和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各名的高等数学期末考试成绩,得到茎叶图:

(1)学校规定:成绩不得低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误率的概率不超过0.025的前提下认为成绩优异与教学方式有关?”

下面临界值表仅供参考:

(参考方式:,其中

(2)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为其左、右焦点,为椭圆上一点,且的周长为.

(1)求椭圆的方程;

(2)过点作关于轴对称的两条不同的直线,若直线交椭圆于一点,直线交椭圆于一点,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已两动圆,把它们的公共点的轨迹记为曲线,若曲线轴的正半轴交点为,且曲线上异于点的相异两点满足.

(1)求曲线的方程;

(2)证明直线恒经过一定点,并求出此定点的坐标.

查看答案和解析>>

同步练习册答案