精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知是椭圆的右焦点,直线与椭圆相切于点

1)若,求

2)若,求椭圆的标准方程.

【答案】1;(2 .

【解析】

1)把直线方程与椭圆方程联立,消去的一元二次方程,直线与椭圆相切,则,结合可求得

2)利用(1)中结论可求得点坐标,作轴于点,轴于点,,,则有,因此,,这样可由点坐标表示出点坐标,由在直线上可得,这样结合可解得得椭圆标准方程.

1)由直线与椭圆方程联立得,①,

因直线与椭圆相切,则,因此可得

,则

2)将代入方程①式可得

因此,因此点

轴于点,轴于点,,,

则有,因此,,

,∵在直线上,

因此,化简得

又由

则可得,即有,∵

,因此所求的椭圆方程为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

讨论的单调性.

,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中直线与抛物线C交于AB两点,且

C的方程;

D为直线外一点,且的外心MC上,求M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角的对边分别为,已知 .

(1)求角

(2)若点满足,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求不等式的解集;

(2)若不等式的解集为空集,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体的棱上(除去棱AD)到直线的距离相等的点有个,记这个点分别为,则直线与平面所成角的正弦值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题

(1)若为假命题,求实数的取值范围;

(2))若为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)求的值域;

(2)若存在唯一的整数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若四面体的三组对棱分别相等,即,给出下列结论:

①四面体每组对棱相互垂直;

②四面体每个面的面积相等;

③从四面体每个顶点出发的三条棱两两夹角之和大而小于

④连接四面体每组对棱中点的线段相互垂直平分.

其中正确结论的序号是__________. (写出所有正确结论的序号)

查看答案和解析>>

同步练习册答案