精英家教网 > 高中数学 > 题目详情

对于函数f(x)=-2cosx x[0,]与函数有下列命题:

①函数的图像关于对称;

②函数g(x)有且只有一个零点;

③函数f(x)和函数g(x)图像上存在平行的切线;

④若函数在点P处的切线平行于函数

在点Q处的切线,则直线PQ的斜率为

其中正确的命题是         。(将所有正确命题的序号都填上)

 

【答案】

②③④

【解析】解:因为

对于函数f(x)=-2cosx x[0,]与函数 

①函数的图像关于对称;不成立。

②函数g(x)有且只有一个零点;成立

③函数f(x)和函数g(x)图像上存在平行的切线;成立

④若函数在点P处的切线平行于函数 

在点Q处的切线,则直线PQ的斜率为成立

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x)=
2
(sinx+cosx)
,给出下列四个命题:
①存在α∈(-
π
2
,0)
,使f(α)=
2
; 
②存在α∈(0,
π
2
)
,使f(x-α)=f(x+α)恒成立;
③存在φ∈R,使函数f(x+?)的图象关于坐标原点成中心对称;
④函数f(x)的图象关于直线x=-
4
对称;
⑤函数f(x)的图象向左平移
π
4
就能得到y=-2cosx的图象
其中正确命题的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=
sinx,sinx≥cosx
cosx,sinx<cosx
,则下列正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=asin3x+
b
x3
+c
(其中a、b∈R,c∈Z),选取a、b、c的一组值计算f(1)、f(-1),所得结果一定不是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…fn+1(x)=f[fn(x)],(n∈N*,且n≥2),令集合M={x|f2012(x)=
1
x
,x∈R}
,则集合M为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数①f(x)=4x+
1
x
-5
,②f(x)=|log2x|-(
1
2
)x
,③f(x)=cos(x+2)-cosx,
判断如下两个命题的真假:
命题甲:f(x)在区间(1,2)上是增函数;
命题乙:f(x)在区间(0,+∞)上恰有两个零点x1,x2,且x1x2<1.
能使命题甲、乙均为真的函数的序号是(  )
A、①B、②C、①③D、①②

查看答案和解析>>

同步练习册答案