精英家教网 > 高中数学 > 题目详情

抛物线的顶点在原点,对称轴是x轴,抛物线上点(-5,m)到焦点距离是6,则抛物线的方程是


  1. A.
    y 2=-2x
  2. B.
    y 2=-4x
  3. C.
    y 2=2x
  4. D.
    y 2=-4x或y 2=-36x
B
试题分析:因为抛物线的顶点在原点,对称轴是x轴,抛物线上点(-5,m)到焦点距离是6,所以可设抛物线方程为,其焦点为(),准线为,那么由抛物线定义知(-5,m)到焦点距离是6,即(-5,m)到准线距离是6,所以+5=6,=2,y 2=-4x,故选B。
考点:本题主要考查抛物线的定义、标准方程、几何性质。
点评:明确抛物线的焦点、准线,将“抛物线上点(-5,m)到焦点距离是6”转化为“(-5,m)到准线距离是6”是简化解题过程的关键。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x-y+4=0上,则此抛物线方程为
y2=-16x或x2=16y

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是(  )
A、y2=-8xB、y2=8xC、y2=-4xD、y2=4x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力.
如图,在平面直角坐标系xOy,抛物线的顶点在原点,焦点为F(1,0).过抛物线在x轴上方的不同两点A、B,作抛物线的切线AC、BD,与x轴分别交于C、D两点,且AC与BD交于点M,直线AD与直线BC交于点N.
(1)求抛物线的标准方程;
(2)求证:MN⊥x轴;
(3)若直线MN与x轴的交点恰为F(1,0),求证:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x-y+2=0上,则此抛物线方程为
y2=-8x或x2=8y
y2=-8x或x2=8y

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网实轴长为4
3
的椭圆的中心在原点,其焦点F1,,F2在x轴上.抛物线的顶点在原点O,对称轴为y轴,两曲线在第一象限内相交于点A,且AF1⊥AF2,△AF1F2的面积为3.
(Ⅰ)求椭圆和抛物线的标准方程;
(Ⅱ)过点A作直线l分别与抛物线和椭圆交于B,C,若
AC
=2
AB
,求直线l的斜率k.

查看答案和解析>>

同步练习册答案